25 resultados para TUMOR-BEARING MICE
Resumo:
The effect of cancer cachexia on the TAG/FA substrate cycle in white adipose tissue was determined in vivo using the MAC16 murine model of cachexia. When compared with non-tumor-bearing animals, the rate of TAG-glycerol production was found to be increased almost threefold in animals bearing the MAC13 tumor, which does not induce cachexia, but was not further elevated in animals bearing the MAC16 tumor. In both cases TAG-glycerol production and de novo synthesis of TAG-FA were also increased above non-tumor-bearing animals. In animals bearing the MAC16 tumor, the TAG-FA rates were significantly higher than in animals bearing the MAC13 tumor. This suggests that the presence of the tumor alone is sufficient to cause an increase in cycling rate, and in the absence of an elevated energy intake (MAC16) this may contribute to the depletion of adipose tissue.
Resumo:
Administration of active TG2 to two different in vitro angiogenesis assays resulted in the accumulation of a complex extracellular matrix (ECM) leading to the suppression of endothelial tube formation without causing cell death. Matrix accumulation was accompanied by a decreased rate of ECM turnover, with increased resistance to matrix metalloproteinase-1. Intratumor injection of TG2 into mice bearing CT26 colon carcinoma tumors demonstrated a reduction in tumor growth, and in some cases tumor regression. In TG2 knockout mice, tumor progression was increased and survival rate reduced compared to wild-type mice. In wild-type mice, an increased presence of TG2 was detectable in the host tissue around the tumor. Analysis of CT26 tumors injected with TG2 revealed fibrotic-like tissue containing increased collagen, TG2-mediated crosslink and reduced organized vasculature. TG2-mediated modulation of cell behavior via changes in the ECM may provide a new approach to solid tumor therapy.
Resumo:
Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Resumo:
Proteolysis-inducing factor (PIF) is a sulfated glycoprotein produced by cachexia-inducing tumors, which induces atrophy of skeletal muscle. PIF has been shown to bind specifically with high affinity (Kd, in nanomolar) to sarcolemma membranes from skeletal muscle of both the mouse and the pig, as well as murine myoblasts and a human muscle cell line. Ligand binding was abolished after enzymatic deglycosylation, suggesting that binding was mediated through the oligosaccharide chains in PIF. Chondroitin sulfate, but not heparan or dermatan sulfate, showed competitive inhibition (Kd, 1.1 × 10-7 mol/L) of binding of PIF to the receptor, suggesting an interaction with the sulfated oligosaccharide chains. Ligand blotting of [ 35S]PIF to triton solublized membranes from C2C 12 cells provided evidence for a binding protein of apparent M r of ∼40,000. Amino acid sequence analysis showed the PIF receptor to be a DING protein. Antisera reactive to a 19mer from the N-terminal amino acid residues of the binding protein attenuated protein degradation and activation of the ubiquitin-proteasome pathway induced by PIF in murine myotubes. In addition, the antisera was highly effective in attenuating the decrease in body weight in mice bearing the MAC16 tumor, with a significant increase in muscle wet weight due to an increase in the rate of protein synthesis, together with a reduction in protein degradation through attenuation of the increased proteasome expression and activity. These results confirm that the PIF binding protein has a functional role in muscle protein atrophy in cachexia and that it represents a potential new therapeutic target. ©2007 American Association for Cancer Research.
Resumo:
Both proteolysis-inducing factor (PIF) and angiotensin II have been shown to produce a depression in protein synthesis in murine myotubes concomitant with an increased phosphorylation of eukaryotic initiation factor 2 (eIF2α). Both PIF and angiotensin II were shown to induce autophosphorylation of the RNA-dependent protein kinase (PKR), and an inhibitor of this enzyme completely attenuated the depression in protein synthesis and prevented the induction of eIF2α phosphorylation. The PKR inhibitor also completely attenuated the increase in protein degradation induced by PIF and angiotensin II and prevented the increase in proteasome expression and activity. To confirm these results myotubes were transfected with plasmids that express either wild-type PKR, or a catalytically inactive PKR variant, PKRΔ6. Myotubes expressing PKRΔ6 showed no increase in eIF2α phosphorylation in response to PIF or angiotensin II, no depression in protein synthesis, and no increase in protein degradation or increase in proteasome expression. Induction of the ubiquitin-proteasome pathway by PIF and angiotensin II has been linked to activation of the transcription factor nuclear factor-κB (NF-κB). Inhibition of PKR prevented nuclear migration of NF-κB in response to both PIF and angiotensin II, by preventing degradation of the inhibitor protein I-κB. Phosphorylation of PKR and eIF2α was also significantly increased in the gastrocnemius muscle of weight losing mice bearing the MAC16 tumor, suggesting that a similar process may be operative in cancer cachexia. These results provide a link between the depression of protein synthesis in skeletal muscle and the increase in protein degradation. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
A prominent feature of several type of cancer is cachexia. This syndrome causes a marked loss of lean body mass and muscle wasting, and appears to be mediated by cytokines and tumour products. There are several proteases and proteolytic pathways that could be responsible for the protein breakdown. In the present study, we investigated whether caspases are involved in the proteolytic process of skeletal muscle catabolism observed in a murine model of cancer cachexia (MAC16), in comparison with a related tumour (MAC13), which does not induce cachexia. Using specific peptide substrates, there was an increase of 54% in the proteolytic activity of caspase-1, 84% of caspase-8, 98% of caspase-3 151% to caspase-6 and 177% of caspase-9, in the gastrocnemius muscle of animals bearing the MAC16 tumour (up to 25% weight loss), in relation to muscle from animals bearing the MAC13 tumour (1-5% weight loss). The dual pattern of 89 kDa and 25 kDa fragmentation of poly (ADP-ribose) polymerase (PARP) occurred in the muscle samples from animals bearing the MAC16 tumour and with a high amount of caspase-like activity. Cytochrome c was present in the cytosolic fractions of gastrocnemius muscles from both groups of animals, suggesting that cytochrome c release from mitochondria may be involved in caspase activation. There was no evidence for DNA fragmentation into a nucleosomal ladder typical of apoptosis in the muscles of either group of mice. This data supports a role for caspases in the catabolic events in muscle involved in the cancer cachexia syndrome. © 2001 Cancer Research Campaign.
Resumo:
Cancer cachexia is characterized by selective depletion of skeletal muscle protein reserves. Soleus muscles from mice bearing a cachexia-inducing tumor (MAC16) showed an increased protein degradation in vitro, as measured by tyrosine release, when compared with muscles from nontumor-bearing animals. After incubation under conditions that modify different proteolytic systems, lysosomal, calcium-dependent, and ATP-dependent proteolysis were found to contribute to the elevated protein catabolism. Treatment of mice bearing the MAC16 tumor with the polyunsaturated fatty acid, eicosapentaenoic acid (EPA), attenuated loss of body weight and significantly suppressed protein catabolism in soleus muscles through an inhibition of an ATP-dependent proteolytic pathway. The ATP-ubiquitin-dependent proteolytic pathway is considered to play a major role in muscle catabolism in cachexia, and functional proteasome activity, as determined by “chymotrypsin-like” enzyme activity, was significantly elevated in gastrocnemius muscle of mice bearing the MAC16 tumor as weight loss progressed. When animals bearing the MAC16 tumor were treated with EPA, functional proteasome activity was completely suppressed, together with attenuation of the expression of 20S proteasome a-subunits and the p42 regulator, whereas there was no effect on the expression of the ubiquitin-conjugating enzyme (E214k). These results suggest that EPA induces an attenuation of the up-regulation of proteasome expression in cachectic mice, and this was correlated with an increase in myosin expression, confirming retention of contractile proteins. EPA also inhibited growth of the MAC16 tumor in a dose-dependent manner, and this correlated with suppression of the expression of the 20S proteasome a-subunits in tumor cells, suggesting that this may be the mechanism of tumor growth inhibition. Thus EPA antagonizes loss of skeletal muscle proteins in cancer cachexia by down-regulation of proteasome expression, and this may also be the mechanism for inhibition of tumor growth.
Resumo:
The MAC16 tumour produces a factor which exhibits lipid-mobilizing activity in vitro in addition to causing extensive depletion of host lipid stores. The mechanism of the anti-lipolytic effect of two anti-cachectic agents, eicosapentaenoic acid, an ω-3 polyunsaturated fatty acid (PUFA), and N-(3-phenoxycinnamyl)acetohydroxamic acid (BW A4C), a 5-lipoxygenase inhibitor, has been investigated. These two agents reduce tumour growth and reverse the weight loss which accompanies transplantation of the MAC16 murine colon adenocarcinoma into NMRI mice. Mice transplanted with the MAC16 tumour exhibited weight loss which was directly proportional to the serum lipolytic activity measured in vitro up to a weight loss corresponding to 16% of the original body weight. After this time, an inverse relationship between weight loss and lipolytic activity was observed. Body composition analysis revealed a large decrease in body fat relative to other body compartments. The anti-tumour/anti-cachectic effect of EPA did not appear to be due to its ability to inhibit the production of prostaglandin E2. The MAC16 lipolytic factor increased adenylate cyclase activity in adipocyte plasma membranes in a concentration-dependent manner. EPA inhibited the production of cAMP attributed to this lipid-mobilizing factor. EPA produced alterations in Gi , the guanine nucleotide binding protein which mediates hormonal inhibition of adenylate cyclase, in addition to altering cAMP production in adipocyte plasma membranes in response to hormonal stimulation. The alterations in adenylate cyclase activity were complex and not specific to EPA. EPA stimulated adenylate cyclase activity when in a relatively high fatty acid : membrane ratio and inhibited activity when this ratio was lowered. The inhibitory effect of EPA on adenylate cyclase activity may be the underlying mechanism which explains its anti-lipolytic and anti-cachectic effect. The inability of the related ω-3 PUFA, docosahexaenoic acid (DHA), to inhibit cachexia may be due to a difference in the metabolic fates of these two fatty acids. BW A4C inhibited lipolysis in isolated adipocytes which suggests that this compound may possess the potential for an anti-cachectic effect which is independent of its inhibitory effect on tumour growth.
Resumo:
A series of substituted 4-(1-arylsulfonylindol-2-yl)-4-hydroxycyclohexa-2, 5-dien-1-ones (indolylquinols) has been synthesized on the basis of the discovery of lead compound 1a and screened for antitumor activity. Synthesis of this novel series was accomplished via the "one-pot" addition of lithiated (arylsulfonyl)indoles to 4,4-dimethoxycyclohexa-2,5-dienone followed by deprotection under acidic conditions. Similar methodology gave rise to the related naphtho-, 1H-indole-, and benzimidazole-substituted quinols. A number of compounds in this new series were found to possess in vitro human tumor cell line activity substantially more potent than the recently reported antitumor 4-substituted 4-hydroxycyclohexa-2,5-dien-1-ones1 with similar patterns of selectivity against colon, renal, and breast cell lines. The most potent compound in the series in vitro, 4-(1-benzenesulfonyl-6-fluoro-1H-indol- 2-yl)-4-hydroxycyclohexa-2,5-dienone (1h), exhibits a mean GI50 value of 16 nM and a mean LC50 value of 2.24 μM in the NCI 60-cell-line screen, with LC50 activity in the HCT 116 human colon cancer cell line below 10 nM. The crystal structure of the unsubstituted indolylquinol 1a exhibits two independent molecules, both participating in intermolecular hydrogen bonds from quinol OH to carbonyl O, but one OH group also interacts intramolecularly with a sulfonyl O atom. This interaction, which strengthens upon ab initio optimization, may influence the chemical environment of the bioactive quinol moiety. In vivo, significant antitumor activity was recorded (day 28) in mice bearing subcutaneously implanted MDA-MB-435 xenografts, following intraperitoneal treatment of mice with compound 1a at 50 mg/kg.
Resumo:
Objective: Loss of skeletal muscle is the most debilitating feature of cancer cachexia, and there are few treatments available. The aim of this study was to compare the anticatabolic efficacy of L-leucine and the leucine metabolite β-hydroxy-β-methylbutyrate (Ca-HMB) on muscle protein metabolism, both invitro and invivo. Methods: Studies were conducted in mice bearing the cachexia-inducing murine adenocarcinoma 16 tumor, and in murine C2 C12 myotubes exposed to proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. Results: Both leucine and HMB were found to attenuate the increase in protein degradation and the decrease in protein synthesis in murine myotubes induced by proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. However, HMB was more potent than leucine, because HMB at 50 μM produced essentially the same effect as leucine at 1 mM. Both leucine and HMB reduced the activity of the ubiquitin-proteasome pathway as measured by the functional (chymotrypsin-like) enzyme activity of the proteasome in muscle lysates, as well as Western blot quantitation of protein levels of the structural/enzymatic proteasome subunits (20 S and 19 S) and the ubiquitin ligases (MuRF1 and MAFbx). Invivo studies in mice bearing the murine adenocarcinoma 16 tumor showed a low dose of Ca-HMB (0.25 g/kg) tobe 60% more effective than leucine (1 g/kg) in attenuating loss of body weight over a 4-d period. Conclusion: These results favor the clinical feasibility of using Ca-HMB over high doses of leucine for the treatment of cancer cachexia. © 2014 Elsevier Inc.