66 resultados para THEORETICAL ANALYSIS
Resumo:
A wire drive pulse echo method of measuring the spectrum of solid bodies described. Using an 's' plane representation, a general analysis of the transient response of such solids has been carried out. This was used for the study of the stepped amplitude transient of high order modes of disks and for the case where there are two adjacent resonant frequencies. The techniques developed have been applied to the measurenent of the elasticities of refractory materials at high temperatures. In the experimental study of the high order in-plane resonances of thin disks it was found that the energy travelled at the edge of the disk and this initiated the work on one dimensional Rayleigh waves.Their properties were established for the straight edge condition by following an analysis similar to that of the two dimensional case. Experiments were then carried out on the velocity dispersion of various circuits including the disk and a hole in a large plate - the negative curvature condition.Theoretical analysis established the phase and group velocities for these cases and experimental tests on aluminium and glass gave good agreement with theory. At high frequencies all velocities approach that of the one dimensional Rayleigh waves. When applied to crack detection it was observed that a signal burst travelling round a disk showed an anomalous amplitude effect. In certain cases the signal which travelled the greater distance had the greater amplitude.An experiment was designed to investigate the phenanenon and it was established that the energy travelled in two nodes with different velocities.It was found by analysis that as well as the Rayleigh surface wave on the edge, a seoond node travelling at about the shear velocity was excited and the calculated results gave reasonable agreement with the experiments.
Resumo:
Surface compositional change of GaP, GaAs, GaSb, InP, InAs, InSb, GeSi and CdSe single crystals due to low keV noble gas ion beam bombardment has been investigated by combining X-ray Photoelectron Spectroscopy (XPS) and Low Energy Ion Scattering Spectroscopy (LEISS). The purpose of using this complementary analytical method is to obtain more complete experimental evidence of ion beam modification in surfaces of compound semiconductors and GeSi alloy to improve the understanding of the mechanisms responsible for these effects. Before ion bombardment the sample surfaces were analysed nondestructively by Angular Resolved XPS (ARXPS) and LEISS to get the initial distribution of surface composition. Ion bombardment experiments were carried out using 3keV argon ions with beam current of 1μA for a period of 50 minutes, compositional changes in the surfaces of compound semiconductors and GeSi alloy were monitored with normal XPS. After ion bombardment the surfaces were re-examined with ARXPS and LEISS. Both XPS and LEISS results showed clearly that ion bombardment will change the compositional distribution in the compound semiconductor and GeSi surfaces. In order to explain the observed experimental results, two major theories in this field, Sigmund linear collision cascade theory and the thermodynamic models based on bombardment induced Gibbsian surface segregation and diffusion, were investigated. Computer simulation using TRIM code was also carried out for assistance to the theoretical analysis. Combined the results obtained from XPS and LEISS analyses, ion bombardment induced compositional changes in compound semiconductor and GeSi surfaces are explained in terms of the bombardment induced Gibbsian surface segregation and diffusion.
Resumo:
The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26 In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β Γ ((q-3/β) +1) d qp = d fr .α Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.
Resumo:
This thesis focuses on the theoretical examination of the exchange rate economic (operating) exposure within the context of the theory of the firm, and proposes some hedging solutions using currency options. The examination of economic exposure is based on such parameters as firms' objectives, industry structure and production cost efficiency. In particular, it examines an hypothetical exporting firm with costs in domestic currency, which faces competition from foreign firms in overseas markets and has a market share expansion objective. Within this framework, the hypothesis is established that economic exposure, portrayed in a diagram connecting export prices and real exchange rates, is asymmetric (i.e. the negative effects depreciation are higher than the positive effects of a currency depreciation). In this case, export business can be seen as a real option, given by exporting firms to overseas customer. Different scenarios about the asymmetry hypothesis can be derived for different assumptions about the determinants of economic exposure. Having established the asymmetry hypothesis, the hedging against this exposure is analysed. The hypothesis is established, that a currency call option should be used in hedging against asymmetric economic exposure. Further, some advanced currency options stategies are discussed, and their use in hedging several scenarios of exposure is indicated, establishing the hypothesis that, the optimal options strategy is a function of the determinants of exposure. Some extensions on the theoretical analysis are examined. These include the hedging of multicurrency exposure using options, and the exposure of a purely domestic firm facing import competition. The empirical work addresses two issues: the empirical validity of the asymmetry hypothesis and the examination of the hedging effectiveness of currency options.
Resumo:
A review of published literature was made to establish the fundamental aspects of rolling and allow an experimental programme to be planned. Simulated hot rolling tests, using pure lead as a model material, were performed on a laboratory mill to obtain data on load and torque when rolling square section stock. Billet metallurgy and consolidation of representative defects was studied when modelling the rolling of continuously cast square stock with a view to determining optimal reduction schedules that would result in a product having properties to the high level found in fully wrought billets manufactured from large ingots. It is difficult to characterize sufficiently the complexity of the porous central region in a continuously cast billet for accurate modelling. However, holes drilled into a lead billet prior to rolling was found to be a good means of assessing central void consolidation in the laboratory. A rolling schedule of 30% (1.429:1) per pass to a total of 60% (2.5:1) will give a homogeneous, fully recrystallized product. To achieve central consolidation, a total reduction of approximately 70% (3.333:1) is necessary. At the reduction necessary to achieve consolidation, full recrystallization is assured. A theoretical analysis using a simplified variational principle with experimentally derived spread data has been developed for a homogeneous material. An upper bound analysis of a single, centrally situated void has been shown to give good predictions of void closure with reduction and the reduction required for void closure for initial void area fractions 0.45%. A limited number of tests in the works has indicated compliance with the results for void closure obtained in the laboratory.
Resumo:
It is well established that hydrodynamic journal bearings are responsible for self-excited vibrations and have the effect of lowering the critical speeds of rotor systems. The forces within the oil film wedge, generated by the vibrating journal, may be represented by displacement and velocity coefficient~ thus allowing the dynamical behaviour of the rotor to be analysed both for stability purposes and for anticipating the response to unbalance. However, information describing these coefficients is sparse, misleading, and very often not applicable to industrial type bearings. Results of a combined analytical and experimental investigation into the hydrodynamic oil film coefficients operating in the laminar region are therefore presented, the analysis being applied to a 120 degree partial journal bearing having a 5.0 in diameter journal and a LID ratio of 1.0. The theoretical analysis shows that for this type of popular bearing, the eight linearized coefficients do not accurately describe the behaviour of the vibrating journal based on the theory of small perturbations, due to them being masked by the presence of nonlinearity. A method is developed using the second order terms of Taylor expansion whereby design charts are provided which predict the twentyeight force coefficients for both aligned, and for varying amounts of journal misalignment. The resulting non-linear equations of motion are solved using a modified Newton-Raphson method whereby the whirl trajectories are obtained, thus providing a physical appreciation of the bearing characteristics under dynamically loaded conditions.
Resumo:
The aim of this work was to investigate the feasibility of detecting and locating damage in large frame structures where visual inspection would be difficult or impossible. This method is based on a vibration technique for non-destructively assessing the integrity of structures by using measurements of changes in the natural frequencies. Such measurements can be made at a single point in the structure. The method requires that initially a comprehensive theoretical vibration analysis of the structure is undertaken and from it predictions are made of changes in dynamic characteristics that will occur if each member of the structure is damaged in turn. The natural frequencies of the undamaged structure are measured, and then routinely remeasured at intervals . If a change in the natural frequencies is detected a statistical method. is used to make the best match between the measured changes in frequency and the family of theoretical predictions. This predicts the most likely damage site. The theoretical analysis was based on the finite element method. Many structures were extensively studied and a computer model was used to simulate the effect of the extent and location of the damage on natural frequencies. Only one such analysis is required for each structure to be investigated. The experimental study was conducted on small structures In the laboratory. Frequency changes were found from inertance measurements on various plane and space frames. The computational requirements of the location analysis are small and a desk-top micro computer was used. Results of this work showed that the method was successful in detecting and locating damage in the test structures.
Resumo:
We investigate experimentally and theoretically the dependence of the amplitude of the spatial fundamental grating, created by a pair of coherent light beams while using the running grating technique [M.P. Petrov, S.I. Stepanov and A.V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer Series in Optical Sciences (Springer, 1991); P. Refregier, L. Solymar, H. Rajbenbach and J.P. Huignard, J. Appl. Phys. 58 (1985) 45], as a function of detuning frequency and beam ratio ß in photorefractive Bi12SiO20. It is shown that for ß > 0.05, in addition to the main peak in the frequency dependence of the amplitude, there is an additional peak of lower frequency which, as a rule, dominates the main peak. The position of the main peak depends on ß. The experimental results are in good agreement with the theoretical analysis and the general ideas about excitation and nonlinear interaction of weakly damped space-charge waves.
Resumo:
A theoretical analysis of two-wave mixing in a BSO crystal is developed in the undepleted-pump approximation for a modulated signal beam. It is shown that, for a modulation of high enough frequency, significant ac amplification is possible at three distinct values of pump-beam detuning. A signal beam that is amplitude modulated by a square wave is analyzed by means of the theory, and experimental results are presented in confirmation of the analysis. Finally, it is shown that in the presence of absorption the optimum detunings for dc and ac amplification are different.
Resumo:
The technology of precision bending of tubes has recently increased in importance and is widely demanded for many industrial applications. However, whilst attention has been concentrated on automation and increasing the production rate of the bending machines, it seems that with one exception very little work has been done in order to understand and therefore fundamentally improve the bending process. A new development for the process of draw-bending of tubes, in which the supporting mandrel is axially vibrated at an ultrasonic frequency, has been perfected. A research programme was undertaken to study the mechanics of tube• bending under both vibratory and non-vibratory conditions. For this purpose, a conventional tube-bending machine was modified and equipped with an oscillatory system. Thin-walled mild steel tubes of different diameter to thickness ratios were bent to mean bend radii having various values from 1.5 to 2.0 times the tube diameter. It was found that the application of ultrasonic vibration reduces the process forces and that the force reduction increases with increasing the vibration amplitude. A reduction in the bending torque of up to 30 per cent was recorded and a reduction in the maximum tube-wall thinning of about 15 per cent was observed. The friction vector reversal mechanism as well as a reduction in friction account for the changes of the forces and the strains. Monitoring the mandrel friction during bending showed, in some cases, that the axial vibration reverses the mandrel .mean force from tension to compression and, thus, the mandrel is assisting the tube motion instead of resisting it. A theory has been proposed to describe the mechanics of deformation during draw-bending of tubes, which embodies the conditions of both "with" and "without" mandrel axial vibration. A theoretical analysis, based on the equilibrium of forces approach, has been developed in which the basic process parameters were taken into consideration. The stresses, the strains and the bending torque were calculated utilising this new solution, and a specially written computer programme was used to perform the computations. It was shown that the theory is in good agreement with the measured values of the strains under vibratory and non-vibratory conditions. Also, the predicted bending 'torque showed a similar trend to that recorded experimentally.
Resumo:
Reported in this thesis are test results of 37 eccentrically prestressed beams with stirrups. Single variable parameters were investigated including the prestressing force, the prestressing steel area, the concrete strength, the aspect ratio h/b and the stirrups size and spacing. Interaction of bending, torsion and shear was also investigated by testing a series of beams subjected to varying bending/torsional moment ratios. For the torsional strength an empirical expression of linear format is proposed and can be rearranged in a non-dimensional interaction form: T/To+V/Vo+M/Mo+Ps/Po+Fs/Fo=Pc2/Fsp. This formula which is based on an average experimental steel stress lower than the yield point is compared with 243 prestressed beams containing ' stirrups, including the author's test beams, and good agreement is obtained. For the theoretical analysis of the problem of torsion combined with bending and shear in concrete beams with stirrups, the method of torque-friction is proposed and developed using an average steel stress. A general linear interaction equation for combined torsion with bending and/or shear is proposed in the following format: (fi) T/Tu=1 where (fi) is a combined loading factor to modify the pure ultimate strength for differing cases of torsion with bending and/or shear. From the analysis of 282 reinforced and prestressed concrete beams containing stirrups, including the present investigation, good agreement is obtained between the method and the test results. It is concluded that the proposed method provides a rational and simple basis for predicting the ultimate torisional strength and may also be developed for design purposes.
Resumo:
The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.
Resumo:
As public policy issues increasingly have a technical aspect to them an interactive relationship has developed between science and policy. The aim of this thesis is to investigate the two aspects of this relationship: the influence of science on policy and the influence of policy implications on science. Most existing studies in this area treat only one or other of these aspects. Furthermore, they tend to provide interesting case study material but very little theoretical analysis. This thesis attempts to overcome these problems by dealing with both aspects of the interaction between science and policy and by providing theoretical models of this relationship. The thesis combines the theoretical development of these models with the analysis of three empirical case studies: the controversy in Britain over smoking and health; the application of educational psychology to the development of education policy in Britain; the controversy over the health effect of lead in the environment. The theoretical models are developed in Part 1. In Part 2 the empirical case studies are presented and in Part 3 the theoretical material is assessed in the light of these case studies. The main thesis of this study is that there is a fundamental mismatch between science and policy-making. Criticism is always essential in science. However, when science is involved in the policy process, either scientific claims are not subjected to a significant level of criticism or they are scrutinized so closely that no view achieves general consensus and conflicting advice results. In this situation, contrary to the traditional view, science can generate uncertainty. The role which science plays in the policy process is influenced by this level of criticism, by the context of political power and by the progress of an issue through the various stages of the policy process.
Resumo:
There is much talk of =the crisis‘ in higher education, often expressed in fatalistic narratives about the (im)possibility of critical resistance or alternatives to the deepening domination of neoliberal rationality and capitalist power throughout social life. But how precisely are we to make sense of this situation? In what ways is it experienced? And what knowledges and practices may help us to respond? These questions form the basis for a series of explorations of the history and character of this crisis, the particular historical conjuncture that we occupy today, and the different types of theoretical analysis and political response it seems to be engendering. Our talk will explore the tensions between readings of the situation as a paralyzing experience of domination, loss and impossibility, on the one hand, and radical transformation and the opening of future possibilities, on the other. We will finally consider what implications new forms of political theory being created in the new student movements have for reconceptualising praxis in higher education today, and perhaps for a wider imagination of post-capitalist politics.
Resumo:
In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.