23 resultados para Symbiosis.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parmelia conspersa (Ehrh. Ex Ach.)Ach. is a foliose lichen found more frequently on south facing compared with north facing rock surfaces in South Gwynedd, Wales, UK. The radial growth of thalli of P. conspersa from a north and a south facing rock surface was measured in situ at intervals of two months for 1 yr during 1990/1991. Mean annual radial growth rates were greater on the south compared with the north facing rock surface. In addition, the pattern of radial growth varied during the year with maximum growth recorded in the Feb/Mar. period especially on the south facing rock surface. The levels of ribitol, arabitol and mannitol were measured in individual lobes of P. conspersa collected from the same rock surfaces on 4 days (2 Jun; 7 July and 30 Nov. 1990 and 29 Mar. 1991) during 1990/1991. The total of the three carbohydrates varied between days; the levels of arbitol and ribitol being significantly lower in the 7 July sample on both north and south facing rock surfaces. In addition, the levels ribitol, arabitol and mannitol were higher on the south facing rock surface especially in the summer samples. The ratio of arabitol plus mannitol to ribitol and the mannitol/arabitol ratio varied more between days sampled than between north and south facing rock surfaces. The level of ribitol in individual thalli was positively correlated with arabitol on the north facing and with mannitol on the south facing slope. These results suggest that differences in the radial growth of P. conspersa thalli with aspect are more likely to reflect higher rates of photosynthesis on the south facing rock surface rather than large difference in the way carbohydrates were partitioned on the different surfaces. Lower radial growth rates may place P. conspersa at a competitive disadvantage on north facing rock surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbohydrate concentrations in the marginal hypothallus and areolae of the crustose lichen Rhizocarpon geographicum (L.) DC. were measured in north Wales, U.K. using gas chromatography. Ribitol, arabitol, and mannitol were the most abundant carbohydrates while a- glucose ß-glucose, fructose, sucrose, and trehalose were present in smaller amounts. The concentrations of arabitol, ribitol, mannitol, fructose, and a-glucose were greater in the areolae while the concentration of trehalose was greater in the hypothallus. Concentrations of carbohydrates varied little between sample days. Concentrations of polyols in the hypothallus were not correlated with those in the areolae. These results suggest: 1) the hypothallus has a lower demand for carbohydrates than the areolae or there is limited transport from areolae to hypothallus, 2) increased trehalose in the non-lichenised hypothallus may be an adaptation to withstand stress and desiccation, and 3) polyols are partitioned differently in the hypothallus and areolae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New lobe development and lobe division was studied in the foliose lichen Xanthoparmelia conspersa (Ehrh. ex. Ach.) Hale. In thalli with either the centre or margin removed, the inside edge of the perimeter, the outer edge of the reproductive centre, and fragments derived from the thallus perimeter all regenerated growing points (‘lobe primordia’) within a year. Thalli possessing isidia had the greatest ability to regenerate growing points. In reproductive thalli, there was a positive correlation between the density of new growing points and thallus size. When fragments were cut from the perimeters of mature X. conspersa thalli and glued to pieces of slate, the ratio of growing points to mature lobes increased over 54 months. Lobes within a thallus exhibited different degrees of bifurcation. In some bifurcating lobes, the point of origin of the bifurcation advanced at the same rate as the lobe tips over 4 months but in most lobes, the bifurcation point either advanced less rapidly than the lobe tips or retreated from its original location. Removing adjacent lobes had no significant effect on the radial growth of a lobe over 4 months or on the location of the bifurcation point but it increased the number of growing points. These results suggest that for X. conspersa: 1) all portions of of thalli can regenerate growing points, 2) few growing points actually develop into mature lobes, 3) individual lobes within a thallus grow and divide differently, and 4) adjacent lobes inhibit the development of growing points on their neighbours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review considers various aspects of the growth of foliose lichens including early growth and development, variation in radial growth rate (RaGR) of different species, growth to maturity, lobe growth variation, senescence and fragmentation, growth models, the influence of environmental variables, and the maintenance of thallus symmetry. The data suggest that a foliose lichen thallus is essentially a ‘colony’ in which the individual lobes exhibit a considerable degree of autonomy in their growth processes. During development, recognisable juvenile thalli are usually formed by 15 months to 4 years while most mature thalli exhibit RaGR between 1 and 5 mm yr-1. RaGR within a species is highly variable. The growth rate-size curve of a foliose lichen thallus may result from growth processes that take place at the tips of individual lobes together with size-related changes in the intensity of competition for space between the marginal lobes. Radial growth and growth in mass is influenced by climatic and microclimatic factors and also by substratum factors such as rock and bark texture, chemistry, and nutrient enrichment. Possible future research topics include: (1) measuring fast growing foliose species through life, (2) the three dimensional changes that occur during lobe growth, (3) the cellular changes that occur during regeneration, growth, and division of lobes, and (4) the distribution and allocation of the major lichen carbohydrates within lobes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in cognitive neuroscience and other approaches to understanding human behavior from a biological standpoint are only now beginning to filter into leadership research. The purpose of this introduction to the Leadership Quarterly Special Issue on the Biology of Leadership is to outline the organizational cognitive neuroscience approach to leadership research, and show how such an approach can fruitfully inform both leadership and neuroscientific research. Indeed, we advance the view that the further application of cognitive neuroscientific techniques to leadership research will pay great dividends in our understanding of effective leadership behaviors and as such, a future symbiosis between the two fields is a necessity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Areolae of the crustose lichen Rhizocarpon geographicum (L.) DC., are present on the peripheral prothallus (marginal areolae) and also aggregate to form confluent masses in the centre of the thallus (central areolae). To determine the relationships between these areolae and whether growth of the peripheral prothallus is dependent on the marginal areolae, the density, morphology, and size frequency distributions of marginal areolae were measured in 23 thalli of R. geographicum in north Wales, UK using image analysis (Image J). Size and morphology of central areolae were also studied across the thallus. Marginal areolae were small, punctate, and occurred in clusters scattered over the peripheral prothallus while central areolae were larger and had a lobed structure. The size-class frequency distributions of the marginal and central areolae were fitted by power-law and log-normal models respectively. In 16 out of 23 thalli, central areolae close to the outer edge were larger and had a more complex lobed morphology than those towards the thallus centre. Neither mean width nor radial growth rate (RaGR) of the peripheral prothallus were correlated with density, diameter, or area fraction of marginal areolae. The data suggest central areolae may develop from marginal areolae as follows: (1) marginal areolae develop in clusters at the periphery and fuse to form central areolae, (2) central areolae grow exponentially, and (3) crowding of central areolae results in constriction and fragmentation. In addition, growth of the peripheral prothallus may be unrelated to the marginal areolae. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lichen is an intimate association between an alga and a fungus and is regarded as one of the best examples of ‘mutualism’ or ‘symbiosis’ involving microorganisms. In lichens which have Trebouxia as the algal partner, photosynthesis by the algae results in the production of the soluble polyol ribitol which is then transported to the fungus where it is converted to arabitol and mannitol. Within the fungus, arabitol may act as a short-term carbohydrate reserve while mannitol may be involved in stress resistance. The crustose lichen Rhizocarpon geographicum (L.) DC., has an unusual thallus structure consisting of discrete granules (areolae) containing the algal component growing in association with a non-lichenised fungal hypothallus that extends beyond the areolae to form a marginal ring. The concentrations of ribitol, arabitol, and mannitol were measured, using gas chromatography, in the central areolae and marginal hypothallus of the crustose lichen Rhizocarpon geographicum (L.) DC. growing on slate rocks in north Wales, UK. The concentrations of all three polyols were greater in the central areolae than in the marginal hypothallus. In addition, the ratios of polyols in the marginal hypothallus to that in the central areolae varied through the year. The concentration of an individual poyol in the hypothallus was correlated primarily with the concentrations of the other polyols in the hypothallus and not to their concentrations in the areolae. Low concentration of ribitol, arabitol, and mannitol in the marginal hypothallus compared with the central areolae suggests either a lower demand for carbohydrate by the hypothallus or limited transport of polyols from areolae to hypothallus, and may explain the low growth rates of this species. In addition, polyols appear to be partitioned differently through the year with an increase in mannitol compared with arabitol in more stressful periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lichen is an intimate association between an alga and a fungus and is regarded as one of the best examples of ‘mutualism’ or ‘symbiosis’ involving microorganisms. In lichens which have Trebouxia as the algal partner, photosynthesis by the algae results in the production of the soluble polyol ribitol which is then transported to the fungus where it is converted to arabitol and mannitol. Within the fungus, arabitol may act as a short-term carbohydrate reserve while mannitol may be involved in stress resistance. The crustose lichen Rhizocarpon geographicum (L.) DC., has an unusual thallus structure consisting of discrete granules (areolae) containing the algal component growing in association with a non-lichenised fungal hypothallus that extends beyond the areolae to form a marginal ring. The concentrations of ribitol, arabitol, and mannitol were measured, using gas chromatography, in the central areolae and marginal hypothallus of the crustose lichen Rhizocarpon geographicum (L.) DC. growing on slate rocks in north Wales, UK. The concentrations of all three polyols were greater in the central areolae than in the marginal hypothallus. In addition, the ratios of polyols in the marginal hypothallus to that in the central areolae varied through the year. The concentration of an individual poyol in the hypothallus was correlated primarily with the concentrations of the other polyols in the hypothallus and not to their concentrations in the areolae. Low concentration of ribitol, arabitol, and mannitol in the marginal hypothallus compared with the central areolae suggests either a lower demand for carbohydrate by the hypothallus or limited transport of polyols from areolae to hypothallus, and may explain the low growth rates of this species. In addition, polyols appear to be partitioned differently through the year with an increase in mannitol compared with arabitol in more stressful periods.