19 resultados para Submarine topography
Resumo:
We propose a computationally efficient method to the per-channel dispersion optimisation applied to 50 GHz-spaced N × 20-Gbit/s wavelength division multiplexing return-to-zero differential phase shift keying transmission in non-zero dispersion-shifted fibre based submarine systems. Crown Copyright © 2010.
Resumo:
Structural evidence has demonstrated that P-glycoprotein (P-gp) undergoes considerable conformational changes during catalysis, and these alterations are important in drug interaction. Knowledge of which regions in P-gp undergo conformational alterations will provide vital information to elucidate the locations of drug binding sites and the mechanism of coupling. A number of investigations have implicated transmembrane segment six (TM6) in drug-P-gp interactions, and a cysteine-scanning mutagenesis approach was directed to this segment. Introduction of cysteine residues into TM6 did not disturb basal or drug-stimulated ATPase activity per se. Under basal conditions the hydrophobic probe coumarin maleimide readily labeled all introduced cysteine residues, whereas the hydrophilic fluorescein maleimide only labeled residue Cys-343. The amphiphilic BODIPY-maleimide displayed a more complex labeling profile. The extent of labeling with coumarin maleimide did not vary during the catalytic cycle, whereas fluorescein maleimide labeling of F343C was lost after nucleotide binding or hydrolysis. BODIPY-maleimide labeling was markedly altered during the catalytic cycle and indicated that the adenosine 5'-(beta,gamma-imino)triphosphate-bound and ADP/vanadate-trapped intermediates were conformationally distinct. Our data are reconciled with a recent atomic scale model of P-gp and are consistent with a tilting of TM6 in response to nucleotide binding and ATP hydrolysis.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format. © 2007 Optical Society of America.