18 resultados para Submarine Pipelines
Resumo:
The cross-country petroleum pipelines are environmentally sensitive because they traverse through varied terrain covering crop fields, forests, rivers, populated areas, desert, hills and offshore. Any malfunction of these pipelines may cause devastating effect on the environment. Hence, the pipeline operators plan and design pipelines projects with sufficient consideration of environment and social aspects along with the technological alternatives. Traditionally, in project appraisal, optimum technical alternative is selected using financial analysis. Impact assessments (IA) are then carried out to justify the selection and subsequent statutory approval. However, the IAs often suggest alternative sites and/or alternate technology and implementation methodology, resulting in revision of entire technical and financial analysis. This study addresses the above issues by developing an integrated framework for project feasibility analysis with the application of analytic hierarchy process (AHP), a multiple attribute decision-making technique. The model considers technical analysis (TA), socioeconomic IA (SEIA) and environmental IA (EIA) in an integrated framework to select the best project from a few alternative feasible projects. Subsequent financial analysis then justifies the selection. The entire methodology has been explained here through a case application on cross-country petroleum pipeline project in India.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format. © 2007 Optical Society of America.