27 resultados para Subjective-probability
Resumo:
Aim: To determine whether eyes implanted with the Lenstec KH-3500 "accommodative" intraocular lenses (IOLs) have improved subjective and objective focusing performance compared to a standard monofocal IOLs. Methods: 28 participants were implanted monocularly with a KH-3500 " accommodative" IOL and 20 controls with a Softec1 IOL. Outcome measures of refraction, visual acuity, subjective amplitude of accommodation, objective accommodative stimulus response curve, aberrometry, and Scheimpflug imaging were taken at ∼3 weeks and repeated after 6 months. Results: Best corrected acuity with the KH-3500 was 0.06 (SD 0.13) logMAR at distance and 0.58 (0.20) logMAR at near. Accommodation was 0.39 (0.53) D measured objectively and 3.1 (1.6) D subjectively. Higher order aberrations were 0.87 (0.85) μm and lower order were 0.24 (0.39) μm. Posterior subcapsular light scatter was 0.95% (1.37%) greater than IOL clarity. In comparison, all control group measures were similar except objective (0.17 (0.13) D; p = 0.032) and subjective (2.0 (0.9) D; p = 0.009) amplitude of accommodation. Six months following surgery, posterior subcapsular scatter had increased (p<0.01) in the KH-3500 implanted subjects and near word acuity had decreased (p<0.05). Conclusions: The objective accommodating effects of the KH-3500 IOL appear to be limited, although the subjective and objective accommodative range is significantly increased compared to control subjects implanted with conventional IOLs. However, this "accommodative" ability of the lens appears to have decreased by 6 months post-surgery.
Resumo:
We analyze theoretically the interplay between optical return-to-zero signal degradation due to timing jitter and additive amplified-spontaneous-emission noise. The impact of these two factors on the performance of a square-law direct detection receiver is also investigated. We derive an analytical expression for the bit-error probability and quantitatively determine the conditions when the contributions of the effects of timing jitter and additive noise to the bit error rate can be treated separately. The analysis of patterning effects is also presented. © 2007 IEEE.
Resumo:
Aims: To establish the sensitivity and reliability of objective image analysis in direct comparison with subjective grading of bulbar hyperaemia. Methods: Images of the same eyes were captured with a range of bulbar hyperaemia caused by vasodilation. The progression was recorded and 45 images extracted. The images were objectively analysed on 14 occasions using previously validated edge-detection and colour-extraction techniques. They were also graded by 14 eye-care practitioners (ECPs) and 14 non-clinicians (NCb) using the Efron scale. Six ECPs repeated the grading on three separate occasions Results: Subjective grading was only able to differentiate images with differences in grade of 0.70-1.03 Efron units (sensitivity of 0.30-0.53), compared to 0,02-0.09 Efron units with objective techniques (sensitivity of 0.94-0.99). Significant differences were found between ECPs and individual repeats were also inconsistent (p<0.001). Objective analysis was 16x more reliable than subjective analysis. The NCLs used wider ranges of the scale but were more variable than ECPs, implying that training may have an effect on grading. Conclusions: Objective analysis may offer a new gold standard in anterior ocular examination, and should be developed further as a clinical research tool to allow more highly powered analysis, and to enhance the clinical monitoring of anterior eye disease.
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.
Resumo:
Projects that are exposed to uncertain environments can be effectively controlled with the application of risk analysis during the planning stage. The Analytic Hierarchy Process, a multiattribute decision-making technique, can be used to analyse and assess project risks which are objective or subjective in nature. Among other advantages, the process logically integrates the various elements in the planning process. The results from risk analysis and activity analysis are then used to develop a logical contingency allowance for the project through the application of probability theory. The contingency allowance is created in two parts: (a) a technical contingency, and (b) a management contingency. This provides a basis for decision making in a changing project environment. Effective control of the project is made possible by the limitation of the changes within the monetary contingency allowance for the work package concerned, and the utilization of the contingency through proper appropriation. The whole methodology is applied to a pipeline-laying project in India, and its effectiveness in project control is demonstrated.
Resumo:
We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the framework of noisy nonlinear Schrödinger equation. We then consider model modifications due to in-line (filtering, amplitude and phase modulation) control. It is examined how control elements change the error probability in optical soliton transmission. Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are beyond perturbation theory. We describe in detail a new phenomenon of soliton collapse that occurs under the combined action of noise, filtering and amplitude modulation. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Due to the dynamic and mutihop nature of the Mobile Ad-hoc Network (MANET), voice communication over MANET may encounter many challenges. We set up a subjective quality evaluation model using ITU-T E-model with extension. And through simulation in NS-2, we evaluate how the following factors impact voice quality in MANET: the number of hops, the number of route breakages, the number of communication pairs and the background traffic. Using AODV as the underlying routing protocol, and with the MAC layer changed from 802.11 DCF to 802.11e EDCF, we observe that 802.11e is more suitable for implementating voice communication over MANET. © 2005 IEEE.
An improved conflicting evidence combination approach based on a new supporting probability distance
Resumo:
To avoid counter-intuitive result of classical Dempster's combination rule when dealing with highly conflict information, many improved combination methods have been developed through modifying the basic probability assignments (BPAs) of bodies of evidence (BOEs) by using a certain measure of the degree of conflict or uncertain information, such as Jousselme's distance, the pignistic probability distance and the ambiguity measure. However, if BOEs contain some non-singleton elements and the differences among their BPAs are larger than 0.5, the current conflict measure methods have limitations in describing the interrelationship among the conflict BOEs and may even lead to wrong combination results. In order to solve this problem, a new distance function, which is called supporting probability distance, is proposed to characterize the differences among BOEs. With the new distance, the information of how much a focal element is supported by the other focal elements in BOEs can be given. Also, a new combination rule based on the supporting probability distance is proposed for the combination of the conflicting evidences. The credibility and the discounting factor of each BOE are generated by the supporting probability distance and the weighted BOEs are combined directly using Dempster's rules. Analytical results of numerical examples show that the new distance has a better capability of describing the interrelationships among BOEs, especially for the highly conflicting BOEs containing non-singleton elements and the proposed new combination method has better applicability and effectiveness compared with the existing methods.
Resumo:
Purpose: To assess the inter and intra observer variability of subjective grading of the retinal arterio-venous ratio (AVR) using a visual grading and to compare the subjectively derived grades to an objective method using a semi-automated computer program. Methods: Following intraocular pressure and blood pressure measurements all subjects underwent dilated fundus photography. 86 monochromatic retinal images with the optic nerve head centred (52 healthy volunteers) were obtained using a Zeiss FF450+ fundus camera. Arterio-venous ratios (AVR), central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) were calculated on three separate occasions by one single observer semi-automatically using the software VesselMap (ImedosSystems, Jena, Germany). Following the automated grading, three examiners graded the AVR visually on three separate occasions in order to assess their agreement. Results: Reproducibility of the semi-automatic parameters was excellent (ICCs: 0.97 (CRAE); 0.985 (CRVE) and 0.952 (AVR)). However, visual grading of AVR showed inter grader differences as well as discrepancies between subjectively derived and objectively calculated AVR (all p < 0.000001). Conclusion: Grader education and experience leads to inter-grader differences but more importantly, subjective grading is not capable to pick up subtle differences across healthy individuals and does not represent true AVR when compared with an objective assessment method. Technology advancements mean we no longer rely on opthalmoscopic evaluation but can capture and store fundus images with retinal cameras, enabling us to measure vessel calibre more accurately compared to visual estimation; hence it should be integrated in optometric practise for improved accuracy and reliability of clinical assessments of retinal vessel calibres. © 2014 Spanish General Council of Optometry.
Resumo:
The method for the computation of the conditional probability density function for the nonlinear Schrödinger equation with additive noise is developed. We present in a constructive form the conditional probability density function in the limit of small noise and analytically derive it in a weakly nonlinear case. The general theory results are illustrated using fiber-optic communications as a particular, albeit practically very important, example.
Resumo:
In this paper a full analytic model for pause intensity (PI), a no-reference metric for video quality assessment, is presented. The model is built upon the video play out buffer behavior at the client side and also encompasses the characteristics of a TCP network. Video streaming via TCP produces impairments in play continuity, which are not typically reflected in current objective metrics such as PSNR and SSIM. Recently the buffer under run frequency/probability has been used to characterize the buffer behavior and as a measurement for performance optimization. But we show, using subjective testing, that under run frequency cannot reflect the viewers' quality of experience for TCP based streaming. We also demonstrate that PI is a comprehensive metric made up of a combination of phenomena observed in the play out buffer. The analytical model in this work is verified with simulations carried out on ns-2, showing that the two results are closely matched. The effectiveness of the PI metric has also been proved by subjective testing on a range of video clips, where PI values exhibit a good correlation with the viewers' opinion scores. © 2012 IEEE.
Resumo:
Purpose: To determine whether the ‘through-focus’ aberrations of a multifocal and accommodative intraocular lens (IOL) implanted patient can be used to provide rapid and reliable measures of their subjective range of clear vision. Methods: Eyes that had been implanted with a concentric (n = 8), segmented (n = 10) or accommodating (n = 6) intraocular lenses (mean age 62.9 ± 8.9 years; range 46-79 years) for over a year underwent simultaneous monocular subjective (electronic logMAR test chart at 4m with letters randomised between presentations) and objective (Aston open-field aberrometer) defocus curve testing for levels of defocus between +1.50 to -5.00DS in -0.50DS steps, in a randomised order. Pupil size and ocular aberration (a combination of the patient’s and the defocus inducing lens aberrations) at each level of blur was measured by the aberrometer. Visual acuity was measured subjectively at each level of defocus to determine the traditional defocus curve. Objective acuity was predicted using image quality metrics. Results: The range of clear focus differed between the three IOL types (F=15.506, P=0.001) as well as between subjective and objective defocus curves (F=6.685, p=0.049). There was no statistically significant difference between subjective and objective defocus curves in the segmented or concentric ring MIOL group (P>0.05). However a difference was found between the two measures and the accommodating IOL group (P<0.001). Mean Delta logMAR (predicted minus measured logMAR) across all target vergences was -0.06 ± 0.19 logMAR. Predicted logMAR defocus curves for the multifocal IOLs did not show a near vision addition peak, unlike the subjective measurement of visual acuity. However, there was a strong positive correlation between measured and predicted logMAR for all three IOLs (Pearson’s correlation: P<0.001). Conclusions: Current subjective procedures are lengthy and do not enable important additional measures such as defocus curves under differently luminance or contrast levels to be assessed, which may limit our understanding of MIOL performance in real-world conditions. In general objective aberrometry measures correlated well with the subjective assessment indicating the relative robustness of this technique in evaluating post-operative success with segmented and concentric ring MIOL.