27 resultados para Sub-wavelength structures
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
Using three fibre gratings with excessively tilted structures in the cavity, we have experimentally demonstrated a multiwavelength switchable erbium-doped fibre ring laser system. The three tilted gratings act as in-fibre polariser and polarisation dependent loss filters to induce the polarisation hole burning effect in the cavity for the operation of the laser at single, double, triple and quadruple wavelengths. The laser system has demonstrated good stability under room temperature conditions and also achieved a high degree of polarization (~30dB), high optical signal to noise ratio (up to 63dB) and high side mode suppression (~50dB). The system has also been investigated for temperature and strain sensing by subjecting the seeding fibre Bragg gratings (FBG) to temperature and strain variations. Since the loss band of the polarisation dependent loss filter is broader than the bandwidth of the seeding FBG, the laser output shifts in wavelength with the applied temperature and strain. The fibre ring laser has shown good responses to the temperature and strain, providing sensitivities of approximately 11.7 pm/°C and 0.85pm/µe respectively.
Resumo:
Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.
Resumo:
Material processing using high-intensity femtosecond (fs) laser pulses is a fast developing technology holding potential for direct writing of multi-dimensional optical structures in transparent media. In this work we re-examine nonlinear diffraction theory in context of fs laser processing of silica in sub-critical (input power less than the critical power of self-focusing) regime. We have applied well known theory, developed by Vlasov, Petrishev and Talanov, that gives analytical description of the evolution of a root-mean-square beam (not necessarily Gaussian) width RRMS(z) in medium with the Kerr nonlinearity.
Resumo:
Current British government economic development policy emphasises regional and sub-regional scale, multi-agent initiatives that form part of national frameworks to encourage a 'bottom up' approach to economic development. An emphasis on local multi-agent initiatives was also the mission of Training and Enterprise Councils (TECs). Using new survey evidence this article tracks the progress of a number of initiatives established under the TECs, using the TEC Discretionary Fund as an example. It assesses the ability of successor bodies to be more effective in promoting local economic development. Survey evidence is used to confirm that many projects previously set up by the TECs continue to operate successfully under new partnership arrangements. However as new structures have developed, and policy has become more centralized, it is less likely that similar local initiatives will be developed in future. There is evidence to suggest that with the end of the TECs a gap has emerged in the institutional infrastructure for local economic development, particularly with regard to workforce development. Much will depend in future on how the Regional Development Agencies deploy their growing power and resources.
Resumo:
The recent advancement in the growth technology of InGaN/GaN has decently positioned InGaN based white LEDs to leap into the area of general or daily lighting. Monolithic white LEDs with multiple QWs were previously demonstrated by Damilano et al. [1] in 2001. However, there are several challenges yet to be overcome for InGaN based monolithic white LEDs to establish themselves as an alternative to other day-to-day lighting sources [2,3]. Alongside the key characteristics of luminous efficacy and EQE, colour rendering index (CRI) and correlated colour temperature (CCT) are important characteristics for these structures [2,4]. Investigated monolithic white structures were similar to that described in [5] and contained blue and green InGaN multiple QWs without short-period superlattice between them and emitting at 440 nm and 530 nm, respectively. The electroluminescence (EL) measurements were done in the CW and pulse current modes. An integration sphere (Labsphere “CDS 600” spectrometer) and a pulse generator (Agilent 8114A) were used to perform the measurements. The CCT and Green/Blue radiant flux ratio were investigated at extended operation currents from 100mA to 2A using current pulses from 100ns to 100μs with a duty cycle varying from 1% to 95%. The strong dependence of the CCT on the duty cycle value, with the CCT value decreasing by more than three times at high duty cycle values (shown at the 300 mA pulse operation current) was demonstrated (Fig. 1). The pulse width variation seems to have a negligible effect on the CCT (Fig. 1). To account for the joule heating, a duty cycle more than 1% was considered as an overheated mode. For the 1% duty cycle it was demonstrated that the CCT was tuneable in three times by modulating input current and pulse width (Fig. 2). It has also been demonstrated that there is a possibility of keeping luminous flux independent of pulse width variation for a constant value of current pulse (Fig. 3).
Resumo:
Concatenated single-mode-multimode-single-mode (SMS) structures are demonstrated as functional sensing platforms. The devices are fabricated by periodically inserting micrometric sections of multimode optical fiber (MMF) in a single-mode fiber (SMF). The periodic change of the core diameter produces a single strong resonant transmission notch, tunable in the wavelength range from 1200 to 1600 nm. It was found that the position of the notch changed with temperature and refractive index. The devices introduced here are highly compact (length less than 5 mm), simple to fabricate and robust; hence, they are adequate for diverse sensing applications. © 2013 The Japan Society of Applied Physics.
Resumo:
During the last decade, microfabrication of photonic devices by means of intense femtosecond (fs) laser pulses has emerged as a novel technology. A common requirement for the production of these devices is that the refractive index modification pitch size should be smaller than the inscribing wavelength. This can be achieved by making use of the nonlinear propagation of intense fs laser pulses. Nonlinear propagation of intense fs laser pulses is an extremely complicated phenomenon featuring complex multiscale spatiotemporal dynamics of the laser pulses. We have utilized a principal approach based on finite difference time domain (FDTD) modeling of the full set of Maxwell's equations coupled to the conventional Drude model for generated plasma. Nonlinear effects are included, such as self-phase modulation and multiphoton absorption. Such an approach resolves most problems related to the inscription of subwavelength structures, when the paraxial approximation is not applicable to correctly describe the creation of and scattering on the structures. In a representative simulation of the inscription process, the signature of degenerate four wave mixing has been found. © 2012 Optical Society of America.
Resumo:
Using three fibre gratings with excessively tilted structures in the cavity, we have experimentally demonstrated a multiwavelength switchable erbium-doped fibre ring laser system. The three tilted gratings act as in-fibre polariser and polarisation dependent loss filters to induce the polarisation hole burning effect in the cavity for the operation of the laser at single, double, triple and quadruple wavelengths. The laser system has demonstrated good stability under room temperature conditions and also achieved a high degree of polarization (~30dB), high optical signal to noise ratio (up to 63dB) and high side mode suppression (~50dB). The system has also been investigated for temperature and strain sensing by subjecting the seeding fibre Bragg gratings (FBG) to temperature and strain variations. Since the loss band of the polarisation dependent loss filter is broader than the bandwidth of the seeding FBG, the laser output shifts in wavelength with the applied temperature and strain. The fibre ring laser has shown good responses to the temperature and strain, providing sensitivities of approximately 11.7 pm/°C and 0.85pm/µe respectively.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.
Resumo:
Two-channel fiber Bragg grating (TC-FBG) consisting of two localized sub-gratings parallel in the fiber core is fabricated by femtosecond laser. Utilizing the fabricated TC-FBG, stable and switchable dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. © 2015 OSA.
Resumo:
We propose and demonstrate a switchable dual-wavelength erbium-doped fibre ring laser. Competition between the lasing wavelengths in erbium-doped fibre laser at room temperature is suppressed by incorporating a two-channel fibre Bragg grating (TC-FBG), which consists of two highly localized sub-gratings fabricated by femtosecond laser in single mode fibre. Wavelengths and polarization states of the lasing lines are selected by the TC-FBG. Laser output can be switched between single- and dual-wavelength operations by simply adjusting the polarization controller. Stable dual-wavelength output is verified at room temperature with a power fluctuation less than 0.27 dB, and wavelength fluctuation less than 0.004 nm.