21 resultados para Structural development
Resumo:
The research presented in this thesis investigates the nature of the relationship between the development of the Knowledge-Based Economy (KBE) and Structural Funds (SF) in European regions. A particular focus is placed on the West Midlands (UK) and Silesia (Poland). The time-frame taken into account in this research is the years 1999 to 2009. This is methodologically addressed by firstly establishing a new way of calculating the General Index of the KBE for all of the EU regions; secondly, applying a number of statistical methods to measure the influence of the Funds on the changes in the regional KBE over time; and finally, by conducting a series of semi-structured stakeholder interviews in the two key case study regions: the West Midlands and Silesia. The three main findings of the thesis are: first, over the examined time-frame, the values of the KBE General Index increased in over 66% of the EU regions; furthermore, the number of the “new” EU regions in which the KBE increased over time is far higher than in the “old” EU. Second, any impact of Structural Funds on the regional KBE occurs only in the minority of the European regions and any form of functional dependency between the two can be observed only in 30% of the regions. Third, although the pattern of development of the regional KBE and the correlation coefficients differ in the cases of Silesia and the West Midlands, the analysis of variance carried out yields identical results for both regions. Furthermore, the qualitative analysis’ results show similarities in the approach towards the Structural Funds in the two key case-study regions.
Resumo:
Defining 'effectiveness' in the context of community mental health teams (CMHTs) has become increasingly difficult under the current pattern of provision required in National Health Service mental health services in England. The aim of this study was to establish the characteristics of multi-professional team working effectiveness in adult CMHTs to develop a new measure of CMHT effectiveness. The study was conducted between May and November 2010 and comprised two stages. Stage 1 used a formative evaluative approach based on the Productivity Measurement and Enhancement System to develop the scale with multiple stakeholder groups over a series of qualitative workshops held in various locations across England. Stage 2 analysed responses from a cross-sectional survey of 1500 members in 135 CMHTs from 11 Mental Health Trusts in England to determine the scale's psychometric properties. Based on an analysis of its structural validity and reliability, the resultant 20-item scale demonstrated good psychometric properties and captured one overall latent factor of CMHT effectiveness comprising seven dimensions: improved service user well-being, creative problem-solving, continuous care, inter-team working, respect between professionals, engagement with carers and therapeutic relationships with service users. The scale will be of significant value to CMHTs and healthcare commissioners both nationally and internationally for monitoring, evaluating and improving team functioning in practice.
Resumo:
The primary aim of this thesis was to investigate the in vivo ocular morphological and contractile changes occurring within the accommodative apparatus prior to the onset of presbyopia, with particular reference to ciliary muscle changes with age and the origin of a myopic shift in refraction during incipient presbyopia. Commissioned semi-automated software proved capable of extracting accurate and repeatable measurements from crystalline lens and ciliary muscle Anterior Segment Optical Coherence Tomography (AS-OCT) images and reduced the subjectivity of AS-OCT image analysis. AS-OCT was utilised to document longitudinal changes in ciliary muscle morphology within an incipient presbyopic population (n=51). A significant antero-inwards shift of ciliary muscle mass was observed after 2.5 years. Furthermore, in a subgroup study (n=20), an accommodative antero-inwards movement of ciliary muscle mass was evident. After 2.5 years, the centripetal response of the ciliary muscle significantly attenuated during accommodation, whereas the antero-posterior mobility of the ciliary muscle remained invariant. Additionally, longitudinal measurement of ocular biometry revealed a significant increase in crystalline lens thickness and a corresponding decrease in anterior chamber depth after 2.5 years (n=51). Lenticular changes appear to be determinant of changes in refraction during incipient presbyopia. During accommodation, a significant increase in crystalline lens thickness and axial length was observed, whereas anterior chamber depth decreased (n=20). The change in ocular biometry per dioptre of accommodation exerted remained invariant after 2.5 years. Cross-sectional ocular biometric data were collected to quantify accommodative axial length changes from early adulthood to advanced presbyopia (n=72). Accommodative axial length elongation significantly attenuated during presbyopia, which was consistent with a significant increase in ocular rigidity during presbyopia. The studies presented in this thesis support the Helmholtz theory of accommodation and despite the reduction in centripetal ciliary muscle contractile response with age, primarily implicate lenticular changes in the development of presbyopia.
Resumo:
Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.
Resumo:
Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.