25 resultados para Stochastic lattice model
Resumo:
We address the collective dynamics of a soliton train propagating in a medium described by the nonlinear Schrödinger equation. Our approach uses the reduction of train dynamics to the discrete complex Toda chain (CTC) model for the evolution of parameters for each train constituent: such a simplification allows one to carry out an approximate analysis of the dynamics of positions and phases of individual interacting pulses. Here, we employ the CTC model to the problem which has relevance to the field of fibre optics communications where each binary digit of transmitted information is encoded via the phase difference between the two adjacent solitons. Our goal is to elucidate different scenarios of the train distortions and the subsequent information garbling caused solely by the intersoliton interactions. First, we examine how the structure of a given phase pattern affects the initial stage of the train dynamics and explain the general mechanisms for the appearance of unstable collective soliton modes. Then we further discuss the nonlinear regime concentrating on the dependence of the Lax scattering matrix on the input phase distribution; this allows one to classify typical features of the train evolution and determine the distance where the soliton escapes from its slot. In both cases, we demonstrate deep mathematical analogies with the classical theory of crystal lattice dynamics.
Resumo:
We study the strong coupling (SC) limit of the anisotropic Kardar-Parisi-Zhang (KPZ) model. A systematic mapping of the continuum model to its lattice equivalent shows that in the SC limit, anisotropic perturbations destroy all spatial correlations but retain a temporal scaling which shows a remarkable crossover along one of the two spatial directions, the choice of direction depending on the relative strength of anisotropicity. The results agree with exact numerics and are expected to settle the long-standing SC problem of a KPZ model in the infinite range limit. © 2007 The American Physical Society.
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
This paper considers the global synchronisation of a stochastic version of coupled map lattices networks through an innovative stochastic adaptive linear quadratic pinning control methodology. In a stochastic network, each state receives only noisy measurement of its neighbours' states. For such networks we derive a generalised Riccati solution that quantifies and incorporates uncertainty of the forward dynamics and inverse controller in the derivation of the stochastic optimal control law. The generalised Riccati solution is derived using the Lyapunov approach. A probabilistic approximation type algorithm is employed to estimate the conditional distributions of the state and inverse controller from historical data and quantifying model uncertainties. The theoretical derivation is complemented by its validation on a set of representative examples.
Resumo:
Firms worldwide are taking major initiatives to reduce the carbon footprint of their supply chains in response to the growing governmental and consumer pressures. In real life, these supply chains face stochastic and non-stationary demand but most of the studies on inventory lot-sizing problem with emission concerns consider deterministic demand. In this paper, we study the inventory lot-sizing problem under non-stationary stochastic demand condition with emission and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. Using a mixed integer linear programming model, this paper aims to investigate the effects of emission parameters, product- and system-related features on the supply chain performance through extensive computational experiments to cover general type business settings and not a specific scenario. Results show that cycle service level and demand coefficient of variation have significant impacts on total cost and emission irrespective of level of demand variability while the impact of product's demand pattern is significant only at lower level of demand variability. Finally, results also show that increasing value of carbon price reduces total cost, total emission and total inventory and the scope of emission reduction by increasing carbon price is greater at higher levels of cycle service level and demand coefficient of variation. The analysis of results helps supply chain managers to take right decision in different demand and service level situations.
Resumo:
The integrability of the nonlinear Schräodinger equation (NLSE) by the inverse scattering transform shown in a seminal work [1] gave an interesting opportunity to treat the corresponding nonlinear channel similar to a linear one by using the nonlinear Fourier transform. Integrability of the NLSE is in the background of the old idea of eigenvalue communications [2] that was resurrected in recent works [3{7]. In [6, 7] the new method for the coherent optical transmission employing the continuous nonlinear spectral data | nonlinear inverse synthesis was introduced. It assumes the modulation and detection of data using directly the continuous part of nonlinear spectrum associated with an integrable transmission channel (the NLSE in the case considered). Although such a transmission method is inherently free from nonlinear impairments, the noisy signal corruptions, arising due to the ampli¯er spontaneous emission, inevitably degrade the optical system performance. We study properties of the noise-corrupted channel model in the nonlinear spectral domain attributed to NLSE. We derive the general stochastic equations governing the signal evolution inside the nonlinear spectral domain and elucidate the properties of the emerging nonlinear spectral noise using well-established methods of perturbation theory based on inverse scattering transform [8]. It is shown that in the presence of small noise the communication channel in the nonlinear domain is the additive Gaussian channel with memory and signal-dependent correlation matrix. We demonstrate that the effective spectral noise acquires colouring", its autocorrelation function becomes slow decaying and non-diagonal as a function of \frequencies", and the noise loses its circular symmetry, becoming elliptically polarized. Then we derive a low bound for the spectral effiency for such a channel. Our main result is that by using the nonlinear spectral techniques one can significantly increase the achievable spectral effiency compared to the currently available methods [9]. REFERENCES 1. Zakharov, V. E. and A. B. Shabat, Sov. Phys. JETP, Vol. 34, 62{69, 1972. 2. Hasegawa, A. and T. Nyu, J. Lightwave Technol., Vol. 11, 395{399, 1993. 3. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4312{4328, 2014. 4. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4329{4345 2014. 5. Yousefi, M. I. and F. R. Kschischang, IEEE Trans. Inf. Theory, Vol. 60, 4346{4369, 2014. 6. Prilepsky, J. E., S. A. Derevyanko, K. J. Blow, I. Gabitov, and S. K. Turitsyn, Phys. Rev. Lett., Vol. 113, 013901, 2014. 7. Le, S. T., J. E. Prilepsky, and S. K. Turitsyn, Opt. Express, Vol. 22, 26720{26741, 2014. 8. Kaup, D. J. and A. C. Newell, Proc. R. Soc. Lond. A, Vol. 361, 413{446, 1978. 9. Essiambre, R.-J., G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, J. Lightwave Technol., Vol. 28, 662{701, 2010.
Resumo:
For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.
Resumo:
The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.
Resumo:
A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.
Resumo:
We study the dynamical properties of the RZ-DPSK encoded sequences, focusing on the instabilities in the soliton train leading to the distortions of the information transmitted. The problem is reformulated within the framework of complex Toda chain model which allows one to carry out the simplified description of the optical soliton dynamics. We elucidate how the bit composition of the pattern affects the initial (linear) stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train classifying different scenarios for the pattern instabilities. Both approaches are based on the machinery of Hermitian and non-Hermitian lattice analysis. © 2010 IEEE.