28 resultados para Square Root Model
Resumo:
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.
Resumo:
Surface quality is important in engineering and a vital aspect of it is surface roughness, since it plays an important role in wear resistance, ductility, tensile, and fatigue strength for machined parts. This paper reports on a research study on the development of a geometrical model for surface roughness prediction when face milling with square inserts. The model is based on a geometrical analysis of the recreation of the tool trail left on the machined surface. The model has been validated with experimental data obtained for high speed milling of aluminum alloy (Al 7075-T7351) when using a wide range of cutting speed, feed per tooth, axial depth of cut and different values of tool nose radius (0.8. mm and 2.5. mm), using the Taguchi method as the design of experiments. The experimental roughness was obtained by measuring the surface roughness of the milled surfaces with a non-contact profilometer. The developed model can be used for any combination of material workpiece and tool, when tool flank wear is not considered and is suitable for using any tool diameter with any number of teeth and tool nose radius. The results show that the developed model achieved an excellent performance with almost 98% accuracy in terms of predicting the surface roughness when compared to the experimental data. © 2014 The Society of Manufacturing Engineers.
Resumo:
Measurements of area summation for luminance-modulated stimuli are typically confounded by variations in sensitivity across the retina. Recently we conducted a detailed analysis of sensitivity across the visual field (Baldwin et al, 2012) and found it to be well-described by a bilinear “witch’s hat” function: sensitivity declines rapidly over the first 8 cycles or so, more gently thereafter. Here we multiplied luminance-modulated stimuli (4 c/deg gratings and “Swiss cheeses”) by the inverse of the witch’s hat function to compensate for the inhomogeneity. This revealed summation functions that were straight lines (on double log axes) with a slope of -1/4 extending to ≥33 cycles, demonstrating fourth-root summation of contrast over a wider area than has previously been reported for the central retina. Fourth-root summation is typically attributed to probability summation, but recent studies have rejected that interpretation in favour of a noisy energy model that performs local square-law transduction of the signal, adds noise at each location of the target and then sums over signal area. Modelling shows our results to be consistent with a wide field application of such a contrast integrator. We reject a probability summation model, a quadratic model and a matched template model of our results under the assumptions of signal detection theory. We also reject the high threshold theory of contrast detection under the assumption of probability summation over area.
Resumo:
Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.
Resumo:
How do signals from the 2 eyes combine and interact? Our recent work has challenged earlier schemes in which monocular contrast signals are subject to square-law transduction followed by summation across eyes and binocular gain control. Much more successful was a new 'two-stage' model in which the initial transducer was almost linear and contrast gain control occurred both pre- and post-binocular summation. Here we extend that work by: (i) exploring the two-dimensional stimulus space (defined by left- and right-eye contrasts) more thoroughly, and (ii) performing contrast discrimination and contrast matching tasks for the same stimuli. Twenty-five base-stimuli made from 1 c/deg patches of horizontal grating, were defined by the factorial combination of 5 contrasts for the left eye (0.3-32%) with five contrasts for the right eye (0.3-32%). Other than in contrast, the gratings in the two eyes were identical. In a 2IFC discrimination task, the base-stimuli were masks (pedestals), where the contrast increment was presented to one eye only. In a matching task, the base-stimuli were standards to which observers matched the contrast of either a monocular or binocular test grating. In the model, discrimination depends on the local gradient of the observer's internal contrast-response function, while matching equates the magnitude (rather than gradient) of response to the test and standard. With all model parameters fixed by previous work, the two-stage model successfully predicted both the discrimination and the matching data and was much more successful than linear or quadratic binocular summation models. These results show that performance measures and perception (contrast discrimination and contrast matching) can be understood in the same theoretical framework for binocular contrast vision. © 2007 VSP.
Resumo:
Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 (Japan) was performed to evaluate validity and repeatability compared with non-cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted. Methods: Refractive error measurements were obtained from 150 eyes of 75 subjects (aged 25.12 ± 9.03 years), subjectively by a masked optometrist, and objectively with the WAM-5500 at a second session. Keratometry measurements from the WAM-5500 were compared to Javal–Schiotz readings. Intratest variability was examined on all subjects, whilst intertest variability was assessed on a subgroup of 44 eyes 7–14 days after the initial objective measures. The accuracy of the dynamic recording mode of the instrument and its tolerance to longitudinal movement was evaluated using a model eye. An additional evaluation of the dynamic mode was performed using a human eye in relaxed and accommodated states. Results: Refractive error determined by the WAM-5500 was found to be very similar (p = 0.77) to subjective refraction (difference, -0.01 ± 0.38 D). The instrument was accurate and reliable over a wide range of refractive errors (-6.38 to +4.88 D). WAM-5500 keratometry values were steeper by approximately 0.05 mm in both the vertical and horizontal meridians. High intertest repeatability was demonstrated for all parameters measured: for sphere, cylinder power and MSE, over 90% of retest values fell within ±0.50 D of initial testing. In dynamic (high-speed) mode, the root-mean-square of the fluctuations was 0.005 ± 0.0005 D and a high level of recording accuracy was maintained when the measurement ring was significantly blurred by longitudinal movement of the instrument head. Conclusion: The WAM-5500 Auto Ref/Keratometer represents a reliable and valid objective refraction tool for general optometric practice, with important additional features allowing pupil size determination and easy conversion into high-speed mode, increasing its usefulness post-surgically following accommodating intra-ocular lens implantation, and as a research tool in the study of accommodation.
Resumo:
Classical studies of area summation measure contrast detection thresholds as a function of grating diameter. Unfortunately, (i) this approach is compromised by retinal inhomogeneity and (ii) it potentially confounds summation of signal with summation of internal noise. The Swiss cheese stimulus of T. S. Meese and R. J. Summers (2007) and the closely related Battenberg stimulus of T. S. Meese (2010) were designed to avoid these problems by keeping target diameter constant and modulating interdigitated checks of first-order carrier contrast within the stimulus region. This approach has revealed a contrast integration process with greater potency than the classical model of spatial probability summation. Here, we used Swiss cheese stimuli to investigate the spatial limits of contrast integration over a range of carrier frequencies (1–16 c/deg) and raised plaid modulator frequencies (0.25–32 cycles/check). Subthreshold summation for interdigitated carrier pairs remained strong (~4 to 6 dB) up to 4 to 8 cycles/check. Our computational analysis of these results implied linear signal combination (following square-law transduction) over either (i) 12 carrier cycles or more or (ii) 1.27 deg or more. Our model has three stages of summation: short-range summation within linear receptive fields, medium-range integration to compute contrast energy for multiple patches of the image, and long-range pooling of the contrast integrators by probability summation. Our analysis legitimizes the inclusion of widespread integration of signal (and noise) within hierarchical image processing models. It also confirms the individual differences in the spatial extent of integration that emerge from our approach.
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
This thesis studied the effect of (i) the number of grating components and (ii) parameter randomisation on root-mean-square (r.m.s.) contrast sensitivity and spatial integration. The effectiveness of spatial integration without external spatial noise depended on the number of equally spaced orientation components in the sum of gratings. The critical area marking the saturation of spatial integration was found to decrease when the number of components increased from 1 to 5-6 but increased again at 8-16 components. The critical area behaved similarly as a function of the number of grating components when stimuli consisted of 3, 6 or 16 components with different orientations and/or phases embedded in spatial noise. Spatial integration seemed to depend on the global Fourier structure of the stimulus. Spatial integration was similar for sums of two vertical cosine or sine gratings with various Michelson contrasts in noise. The critical area for a grating sum was found to be a sum of logarithmic critical areas for the component gratings weighted by their relative Michelson contrasts. The human visual system was modelled as a simple image processor where the visual stimuli is first low-pass filtered by the optical modulation transfer function of the human eye and secondly high-pass filtered, up to the spatial cut-off frequency determined by the lowest neural sampling density, by the neural modulation transfer function of the visual pathways. The internal noise is then added before signal interpretation occurs in the brain. The detection is mediated by a local spatially windowed matched filter. The model was extended to include complex stimuli and its applicability to the data was found to be successful. The shape of spatial integration function was similar for non-randomised and randomised simple and complex gratings. However, orientation and/or phase randomised reduced r.m.s contrast sensitivity by a factor of 2. The effect of parameter randomisation on spatial integration was modelled under the assumption that human observers change the observer strategy from cross-correlation (i.e., a matched filter) to auto-correlation detection when uncertainty is introduced to the task. The model described the data accurately.
Resumo:
The visual system pools information from local samples to calculate textural properties. We used a novel stimulus to investigate how signals are combined to improve estimates of global orientation. Stimuli were 29 × 29 element arrays of 4 c/deg log Gabors, spaced 1° apart. A proportion of these elements had a coherent orientation (horizontal/vertical) with the remainder assigned random orientations. The observer's task was to identify the global orientation. The spatial configuration of the signal was modulated by a checkerboard pattern of square checks containing potential signal elements. The other locations contained either randomly oriented elements (''noise check'') or were blank (''blank check''). The distribution of signal elements was manipulated by varying the size and location of the checks within a fixed-diameter stimulus. An ideal detector would only pool responses from potential signal elements. Humans did this for medium check sizes and for large check sizes when a signal was presented in the fovea. For small check sizes, however, the pooling occurred indiscriminately over relevant and irrelevant locations. For these check sizes, thresholds for the noise check and blank check conditions were similar, suggesting that the limiting noise is not induced by the response to the noise elements. The results are described by a model that filters the stimulus at the potential target orientations and then combines the signals over space in two stages. The first is a mandatory integration of local signals over a fixed area, limited by internal noise at each location. The second is a taskdependent combination of the outputs from the first stage. © 2014 ARVO.
Resumo:
The purpose was to advance research and clinical methodology for assessing psychopathology by testing the international generalizability of an 8-syndrome model derived from collateral ratings of adult behavioral, emotional, social, and thought problems. Collateral informants rated 8,582 18-59-year-old residents of 18 societies on the Adult Behavior Checklist (ABCL). Confirmatory factor analyses tested the fit of the 8-syndrome model to ratings from each society. The primary model fit index (Root Mean Square Error of Approximation) showed good model fit for all societies, while secondary indices (Tucker Lewis Index, Comparative Fit Index) showed acceptable to good fit for 17 societies. Factor loadings were robust across societies and items. Of the 5,007 estimated parameters, 4 (0.08%) were outside the admissible parameter space, but 95% confidence intervals included the admissible space, indicating that the 4 deviant parameters could be due to sampling fluctuations. The findings are consistent with previous evidence for the generalizability of the 8-syndrome model in self-ratings from 29 societies, and support the 8-syndrome model for operationalizing phenotypes of adult psychopathology from multi-informant ratings in diverse societies. © 2014 Asociación Española de Psicología Conductual.
Resumo:
This study tested the multi-society generalizability of an eight-syndrome assessment model derived from factor analyses of American adults' self-ratings of 120 behavioral, emotional, and social problems. The Adult Self-Report (ASR; Achenbach and Rescorla 2003) was completed by 17,152 18-59-year-olds in 29 societies. Confirmatory factor analyses tested the fit of self-ratings in each sample to the eight-syndrome model. The primary model fit index (Root Mean Square Error of Approximation) showed good model fit for all samples, while secondary indices showed acceptable to good fit. Only 5 (0.06%) of the 8,598 estimated parameters were outside the admissible parameter space. Confidence intervals indicated that sampling fluctuations could account for the deviant parameters. Results thus supported the tested model in societies differing widely in social, political, and economic systems, languages, ethnicities, religions, and geographical regions. Although other items, societies, and analytic methods might yield different results, the findings indicate that adults in very diverse societies were willing and able to rate themselves on the same standardized set of 120 problem items. Moreover, their self-ratings fit an eight-syndrome model previously derived from self-ratings by American adults. The support for the statistically derived syndrome model is consistent with previous findings for parent, teacher, and self-ratings of 11/2-18-year-olds in many societies. The ASR and its parallel collateral-report instrument, the Adult Behavior Checklist (ABCL), may offer mental health professionals practical tools for the multi-informant assessment of clinical constructs of adult psychopathology that appear to be meaningful across diverse societies. © 2014 Springer Science+Business Media New York.
Resumo:
OBJECTIVE: To analyze differences in the variables associated with severity of suicidal intent and in the main factors associated with intent when comparing younger and older adults. DESIGN: Observational, descriptive cross-sectional study. SETTING: Four general hospitals in Madrid, Spain. PARTICIPANTS: Eight hundred seventy suicide attempts by 793 subjects split into two groups: 18-54 year olds and subjects older than 55 years. MEASUREMENTS: The authors tested the factorial latent structure of suicidal intent through multigroup confirmatory factor analysis for categorical outcomes and performed statistical tests of invariance across age groups using the DIFFTEST procedure. Then, they tested a multiple indicators-multiple causes (MIMIC) model including different covariates regressed on the latent factor "intent" and performed two separate MIMIC models for younger and older adults to test for differential patterns. RESULTS: Older adults had higher suicidal intent than younger adults (z = 2.63, p = 0.009). The final model for the whole sample showed a relationship of intent with previous attempts, support, mood disorder, personality disorder, substance-related disorder, and schizophrenia and other psychotic disorders. The model showed an adequate fit (chi²[12] = 22.23, p = 0.035; comparative fit index = 0.986; Tucker-Lewis index = 0.980; root mean square error of approximation = 0.031; weighted root mean square residual = 0.727). All covariates had significant weights in the younger group, but in the older group, only previous attempts and mood disorders were significantly related to intent severity. CONCLUSIONS: The pattern of variables associated with suicidal intent varies with age. Recognition, and treatment of geriatric depression may be the most effective measure to prevent suicidal behavior in older adults.