34 resultados para Social Media Marketing Sport NBA Web2.0


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users' influence scores. They rarely consider a person's expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally 'Sina microblogging'). We found that there is a strong correlation between expertise levels and social media influence scores. In addition, different expertise levels showed influence variation patterns: high-expertise celebrities have stronger influence on the 'audience' in their expertise domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social media influence analysis, sometimes also called authority detection, aims to rank users based on their influence scores in social media. Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users’ influence scores. They rarely consider a person’s expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally ”Sina microblogging”). We found that there is a strong correlation between expertise levels and social media influence scores. Our analysis gave a good explanation of the phenomenon of “top across-domain influencers”. In addition, different expertise levels showed influence variation patterns: e.g., (1) high-expertise celebrities have stronger influence on the “audience” in their expertise domains; (2) expertise seems to be more important than relevance and participation for social media influence; (3) the audiences of top expertise celebrities are more likely to forward tweets on topics outside the expertise domains from high-expertise celebrities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty text detection is important to many social-media-based applications since more and more users utilize social media platforms (e.g., Twitter, Facebook, etc.) as information source to produce or derive interpretations based on them. However, existing uncertainty cues are ineffective in social media context because of its specific characteristics. In this paper, we propose a variant of annotation scheme for uncertainty identification and construct the first uncertainty corpus based on tweets. We then conduct experiments on the generated tweets corpus to study the effectiveness of different types of features for uncertainty text identification. © 2013 Association for Computational Linguistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a summary of the Social Media and Linked Data for Emergency Response (SMILE) workshop, co-located with the Extended Semantic Web Conference, at Montpellier, France, 2013. Following paper presentations and question answering sessions, an extensive discussion and roadmapping session was organised which involved the workshop chairs and attendees. Three main topics guided the discussion - challenges, opportunities and showstoppers. In this paper, we present our roadmap towards effectively exploiting social media and semantic web techniques for emergency response and crisis management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the boundaries between e-commerce and social networking have become increasingly blurred. Many e-commerce websites support the mechanism of social login where users can sign on the websites using their social network identities such as their Facebook or Twitter accounts. Users can also post their newly purchased products on microblogs with links to the e-commerce product web pages. In this paper, we propose a novel solution for cross-site cold-start product recommendation, which aims to recommend products from e-commerce websites to users at social networking sites in 'cold-start' situations, a problem which has rarely been explored before. A major challenge is how to leverage knowledge extracted from social networking sites for cross-site cold-start product recommendation. We propose to use the linked users across social networking sites and e-commerce websites (users who have social networking accounts and have made purchases on e-commerce websites) as a bridge to map users' social networking features to another feature representation for product recommendation. In specific, we propose learning both users' and products' feature representations (called user embeddings and product embeddings, respectively) from data collected from e-commerce websites using recurrent neural networks and then apply a modified gradient boosting trees method to transform users' social networking features into user embeddings. We then develop a feature-based matrix factorization approach which can leverage the learnt user embeddings for cold-start product recommendation. Experimental results on a large dataset constructed from the largest Chinese microblogging service Sina Weibo and the largest Chinese B2C e-commerce website JingDong have shown the effectiveness of our proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main challenges of emergency management lies in communicating risks to the public. On some occasions, risk communicators might seek to increase awareness over emerging risks, while on others the aim might be to avoid escalation of public reactions. Social media accounts offer an opportunity to rapidly distribute critical information and in doing so to mitigate the impact of emergencies by influencing public reactions. This article draws on theories of risk and emergency communication in order to consider the impact of Twitter as a tool for communicating risks to the public. We analyse 10,020 Twitter messages posted by the official accounts of UK local government authorities (councils) in the context of two major emergencies: the heavy snow of December 2010 and the riots of August 2011. Twitter was used in a variety of ways to communicate and manage associated risks including messages to provide official updates, encourage protective behaviour, increase awareness and guide public attention to mitigating actions. We discuss the importance of social media as means of increasing confidence in emergency management institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online writing plays a complex and increasingly prominent role in the life of organizations. From newsletters to press releases, social media marketing and advertising, to virtual presentations and interactions via e-mail and instant messaging, digital writing intertwines and affects the day-to-day running of the company - yet we rarely pay enough attention to it. Typing on the screen can become particularly problematic because digital text-based communication increases the opportunities for misunderstanding: it lacks the direct audio-visual contact and the norms and conventions that would normally help people to understand each other. Providing a clear, convincing and approachable discussion, this book addresses arenas of online writing: virtual teamwork, instant messaging, emails, corporate communication channels, and social media. Instead of offering do and don’t lists, however, it teaches the reader to develop a practice that is observant, reflective, and grounded in the understanding of the basic principles of language and communication. Through real-life examples and case studies, it helps the reader to notice previously unnoticed small details, question previously unchallenged assumptions and practices, and become a competent digital communicator in a wide range of professional contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dramatic growth in e-business is manifest in phenomena such as the surge in internet retailing, the boom in social media based marketing communications, and the centrality of e-commerce to many organizations’ core strategies. Despite this the precise implications of e-business for marketing strategy remain little-understood. In order to guide theory development and practice in the marketing strategy domain, it is of fundamental importance to take stock of the impact that e-business has had upon strategic marketing. Therefore, this chapter develops a conceptual framework in order to explicate the implications of e-business for strategic marketing theory and practice. We find that the impact of e-business on strategic marketing is far-reaching; influencing not only isolated departments, but the organization as a whole. Finally, we conclude that whilst organizations should be alert to the dynamic opportunities and threats posed by e-business, the guiding principle of value creation should not be forgotten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we explore the dual role of global university rankings in the creation of a new, knowledge-identified, transnational capitalist class and in facilitating new forms of social exclusion.We examine how and why the practice of ranking universities has become widely defined by national and international organisations as an important instrument of political and economic policy. We consider how the development of university rankings into a global business combining social research, marketing and public relations, as a tangible policy tool that narrowly redefines the social purposes of higher education itself. Finally, it looks at how the influence of rankings on national funding for teaching and research constrains wider public debate about the meaning of ‘good’ and meaningful education in the UK and other national contexts, particularly by shifting the debate away from democratic publics upward into the elite networked institutions of global capital. We conclude by arguing that, rather than regarding world university rankings as a means to establish criteria of educational value, the practice may be understood as an exclusionary one that furthers the alignment of higher education with neoliberal rationalities at both national and global levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.