56 resultados para Self-adaptive software


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In earlier work we proposed the idea of requirements-aware systems that could introspect about the extent to which their goals were being satisfied at runtime. When combined with requirements monitoring and self adaptive capabilities, requirements awareness should help optimize goal satisfaction even in the presence of changing run-time context. In this paper we describe initial progress towards the realization of requirements-aware systems with REAssuRE. REAssuRE focuses on explicit representation of assumptions made at design time. When such assumptions are shown not to hold, REAssuRE can trigger system adaptations to alternative goal realization strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computational reflection is a well-established technique that gives a program the ability to dynamically observe and possibly modify its behaviour. To date, however, reflection is mainly applied either to the software architecture or its implementation. We know of no approach that fully supports requirements reflection- that is, making requirements available as runtime objects. Although there is a body of literature on requirements monitoring, such work typically generates runtime artefacts from requirements and so the requirements themselves are not directly accessible at runtime. In this paper, we define requirements reflection and a set of research challenges. Requirements reflection is important because software systems of the future will be self-managing and will need to adapt continuously to changing environmental conditions. We argue requirements reflection can support such self-adaptive systems by making requirements first-class runtime entities, thus endowing software systems with the ability to reason about, understand, explain and modify requirements at runtime. © 2010 ACM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Service-based systems are applications built by composing pre-existing services. During design time and according to the specifications, a set of services is selected. Both, service providers and consumers exist in a service market that is constantly changing. Service providers continuously change their quality of services (QoS), and service consumers can update their specifications according to what the market is offering. Therefore, during runtime, the services are periodically and manually checked to verify if they still satisfy the specifications. Unfortunately, humans are overwhelmed with the degree of changes exhibited by the service market. Consequently, verification of the compliance specification and execution of the corresponding adaptations when deviations are detected cannot be carried out in a manual fashion. In this work, we propose a framework to enable online awareness of changes in the service market in both consumers and providers by representing them as active software agents. At runtime, consumer agents concretize QoS specifications according to the available market knowledge. Services agents are collectively aware of themselves and of the consumers' requests. Moreover, they can create and maintain virtual organizations to react actively to demands that come from the market. In this paper we show preliminary results that allow us to conclude that the creation and adaptation of service-based systems can be carried out by a self-organized service market system. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A self-adaptive system adjusts its configuration to tolerate changes in its operating environment. To date, requirements modeling methodologies for self-adaptive systems have necessitated analysis of all potential system configurations, and the circumstances under which each is to be adopted. We argue that, by explicitly capturing and modelling uncertainty in the operating environment, and by verifying and analysing this model at runtime, it is possible for a system to adapt to tolerate some conditions that were not fully considered at design time. We showcase in this paper our tools and research results. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Models@run.time (MRT) workshop series offers a discussion forum for the rising need to leverage modeling techniques for the software of the future. The main goals are to explore the benefits of models@run.time and to foster collaboration and cross-fertilization between different research communities like for example like model-driven engineering (e.g. MODELS), self-adaptive/autonomous systems communities (e.g., SEAMS and ICAC), the control theory community and the artificial intelligence community. © 2012 Authors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Engineering adaptive software is an increasingly complex task. Here, we demonstrate Genie, a tool that supports the modelling, generation, and operation of highly reconfigurable, component-based systems. We showcase how Genie is used in two case-studies: i) the development and operation of an adaptive flood warning system, and ii) a service discovery application. In this context, adaptation is enabled by the Gridkit reflective middleware platform.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel computing systems are increasingly being composed of large numbers of heterogeneous components, each with potentially different goals or local perspectives, and connected in networks which change over time. Management of such systems quickly becomes infeasible for humans. As such, future computing systems should be able to achieve advanced levels of autonomous behaviour. In this context, the system's ability to be self-aware and be able to self-express becomes important. This paper surveys definitions and current understanding of self-awareness and self-expression in biology and cognitive science. Subsequently, previous efforts to apply these concepts to computing systems are described. This has enabled the development of novel working definitions for self-awareness and self-expression within the context of computing systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Smart cameras perform on-board image analysis, adapt their algorithms to changes in their environment, and collaborate with other networked cameras to analyze the dynamic behavior of objects. A proposed computational framework adopts the concepts of self-awareness and self-expression to more efficiently manage the complex tradeoffs among performance, flexibility, resources, and reliability. The Web extra at http://youtu.be/NKe31-OKLz4 is a video demonstrating CamSim, a smart camera simulation tool, enables users to test self-adaptive and self-organizing smart-camera techniques without deploying a smart-camera network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two classes of software that are notoriously difficult to develop on their own are rapidly merging into one. This will affect every key service that we rely upon in modern society, yet a successful merge is unlikely to be achievable using software development techniques specific to either class. This paper explains the growing demand for software capable of both self-adaptation and high integrity, and advocates the use of a collection of "@runtime" techniques for its development, operation and management. We summarise early research into the development of such techniques, and discuss the remaining work required to overcome the great challenge of self-adaptive high-integrity software. © 2011 ACM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The complexity of adapting software during runtime has spawned interest in how models can be used to validate, monitor and adapt runtime behaviour. The use of models during runtime extends the use of modeling techniques beyond the design and implementation phases. The goal of this workshop is to look at issues related to developing appropriate modeldriven approaches to managing and monitoring the execution of systems and, also, to allow the system to reason about itself. We aim to continue the discussion of research ideas and proposals from researchers who work in relevant areas such as MDE, software architectures, reflection, and autonomic and self-adaptive systems, and provide a 'state-of-the-art' research assessment expressed in terms of challenges and achievements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task selection in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without a priori knowledge of the available mail at the cities or inter-agent communication. In order to process a different mail type than the previous one, agents must undergo a change-over during which it remains inactive. We propose a threshold based algorithm in order to maximise the overall efficiency (the average amount of mail collected). We show that memory, i.e. the possibility for agents to develop preferences for certain cities, not only leads to emergent cooperation between agents, but also to a significant increase in efficiency (above the theoretical upper limit for any memoryless algorithm), and we systematically investigate the influence of the various model parameters. Finally, we demonstrate the flexibility of the algorithm to changes in circumstances, and its excellent scalability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study the self-organising behaviour of smart camera networks which use market-based handover of object tracking responsibilities to achieve an efficient allocation of objects to cameras. Specifically, we compare previously known homogeneous configurations, when all cameras use the same marketing strategy, with heterogeneous configurations, when each camera makes use of its own, possibly different marketing strategy. Our first contribution is to establish that such heterogeneity of marketing strategies can lead to system wide outcomes which are Pareto superior when compared to those possible in homogeneous configurations. However, since the particular configuration required to lead to Pareto efficiency in a given scenario will not be known in advance, our second contribution is to show how online learning of marketing strategies at the individual camera level can lead to high performing heterogeneous configurations from the system point of view, extending the Pareto front when compared to the homogeneous case. Our third contribution is to show that in many cases, the dynamic behaviour resulting from online learning leads to global outcomes which extend the Pareto front even when compared to static heterogeneous configurations. Our evaluation considers results obtained from an open source simulation package as well as data from a network of real cameras. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When designing a practical swarm robotics system, self-organized task allocation is key to make best use of resources. Current research in this area focuses on task allocation which is either distributed (tasks must be performed at different locations) or sequential (tasks are complex and must be split into simpler sub-tasks and processed in order). In practice, however, swarms will need to deal with tasks which are both distributed and sequential. In this paper, a classic foraging problem is extended to incorporate both distributed and sequential tasks. The problem is analysed theoretically, absolute limits on performance are derived, and a set of conditions for a successful algorithm are established. It is shown empirically that an algorithm which meets these conditions, by causing emergent cooperation between robots can achieve consistently high performance under a wide range of settings without the need for communication. © 2013 IEEE.