38 resultados para SWELLING
Resumo:
It has been shown that acute administration of ecothiopate iodine in vivo caused an approximate 80% depression of acetylcholinesterase activity in the diaphragms of mice. Inhibition of acetylcholinesterase was accompanied by an influx of calcium at the junctional region of the diaphragm, which continued during subsequent progressive development of a severe myopathy located in the same region. Myopathy was accompanied by loss of creatine kinase from the muscle and was represented, at the light microscope level, by hypercontraction, Procion Yellow staining and loss of cross striations within the muscle fibres. It appeared to reach a point of maximum severity approximately 3-6 hours after ecothiopate administration and then, by means of some repair/regeneration process, regained an apparently normal morphology within 72 hours of the intoxication. At the ultrastructural level, ecothiopate-induced myopathy was recognised by loss of Z-lines, swelling and vacuolation of mitochondria and sarcoplasmic reticulum, dissarray of myofilaments, crystal formation, and sometimes, by the complete obliteration of sarcomeric structure. The development of myopathy in vitro was shown to be nerve-mediated and to require a functional acetylcholine receptor for its development It was successfully treated therapeutically in vivo by pyridine-2-aldoxime methiodide and prophylactically by pyridostigmine bromide. However, the use of a range of membrane-on channel blockers, and of leupeptin, an inhibitor of calcium-activated-neutral-protease, have been unsuccessful in the prevention of ecothiopate-induced myopathy.
Resumo:
Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.
Resumo:
A novel method for tablet coating was studied where a thin polymer film was cast (pre-formed film), dried and applied as a coating hence eliminating the need for using any solvent during the actual coating process. A pre-formed film is initially heating to a temperature where it becomes flexible, a vacuum is applied and the film is then pulled around the tablet. The proposed films (gelatine or cellulose-based) were characterised in terms of their dissolution, swelling, mechanical and thermal properties prior to using them in the novel coating process; selected films were then coated onto tablets containing paracetamol or ibuprofen and the effect of the film on the subsequent dissolution was evaluated. It was found that the pre-formed films could be designed to be fast dissolving and mechanically strong to withstand the stress from the coating process. Also metoclopramide was incorporated in a gelatine film-coating formulation which was then successfully coated on paracetamol-containing core. Gelatin-based films were found to be successful in the novel coating process therefore to be suitable as finished coatings for immediate release dosage forms. Orally disintegrating dosage forms have been identified as a favourable dosage form due to the following reasons: fast onset of drug release, easy to use, not painful and possible increase of amount absorbed to systemic circulation. Selected films formulated for coating studies were also successfully formulated to contain active ingredient suitable for orally disintegrating dosage form; cellulose-based naratriptan-films were studied as orally disintegrating dosage forms of where the effect of formulation on the film properties was studied. It was found that strength of the film can affect the dissolution of the film but it may be the inclusion of specific excipients in the formulation which affect the penetration of the drug through mucosa.
Resumo:
The first demonstration "polymeric ligands" for the immobilisation of quantum dots (QDs) is presented. Specifically, thiol-containing polystyrene microspheres were synthesised and used to incorporate QDs via a swelling/doping strategy. The resultant composite materials were shown to be highly stable against QD leaching in both apolar and polar solvents and retained an identical QD emission profile to non-immobilised QDs. This straightforward approach also allows easy access to controllable and reproducible multiple-QDcontaining microspheres.
Resumo:
Zwitterionic compounds, or zwitterions, are electrically neutral compounds having an equal number of formal unit charges of opposite sign. In common polyzwitterions the zwitterionic groups are usually located in pendent groups rather than the backbone of the macromolecule. Polyzwitterions contain both the anion and cation in the same monomeric unit, unlike polyampholytes which can contain the anion and cation in different monomeric units. The use of cationic and anionic monomers (or monomers capable of becoming charged) in stoichiometric equivalent proportions produces charge-balanced polyampholyte copolymers. Hydrogel materials produced from zwitterionic monomers have been proposed for use and are used in many biomaterial applications but synthetic charge-balanced polyampholyte are less common. Certain properties of hydrogels which are important for their successful use as biomaterials, these include the equilibrium water content, mechanical, surface energy, oxygen permeability, swelling and the coefficient of friction. The zwitterionic monomer N,N-dimethyl-N-(2-acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) was synthesized with 2-hydroxyethly acrylate (HEMA) as the comonomer to produce a series of polyzwitterion hydrogels. To produce charged-balanced copolymer hydrogels two “cationic” monomers were selected; 2-(diethylamino) ethyl methacrylate (DMAEMA) and 3-(dimethylamino) propyl methacrylamide (DMAPMA) and an anionic monomer; 2-acrylamido 2,2 methylpropane sulphonic acid (AMPS). Two series’ of charge-balanced copolymers were synthesized from stoichiometric equivalent ratios of DMAEMA or DMAPMA and AMPS with HEMA as a terpolymer. The zwitterionic copolymer and both charge-balanced copolymers produced clear, cohesive hydrogels. The zwitterionic and charge-balanced copolymers displayed similar EWC’s along with similar mechanical and surface energy properties. The swelling of the zwitterionic copolymer displayed antipolyelectrolyte behavior whereas the charge-balanced copolymers displayed behaviour somewhere between this and a typical polyelectrolyte. This work describes some aspects of the polymerisation and properties of SPDA copolymers and charge-balanced (polyampholyte) copolymers relevant to their potential as biomedical / bioresponsive materials. The biomimetic nature of SPDA together with its compatibility with other monomers makes it a useful and complimentary addition to the building blocks of biomaterials.
Resumo:
Introduction: Lower back pain treatment and compensation costs >$80 billion overall in the US. 75% of back pain is due to disc degeneration in the lumbar region of the spine. Current treatment comprises of painkillers and bed rest or as a more radical solution – interbody cage fusion. In the early stages of disc degeneration the patient would benefit from addition of an injectable gel which polymerises in situ to support the degenerated nucleus pulposus. This involves a material which is an analogue of the natural tissue capable of restoring the biomechanical properties of the natural disc. The nucleus pulposus of the intervertebral disc is an example of a natural proteoglycan consisting of a protein core with negatively charged keratin and chondroitin sulphate attached. As a result of the high fixed charge density of the proteoglycan, the matrix exerts an osmotic swelling pressure drawing sufficient water into support the spinal system. Materials and Methods: NaAMPs (sodium 2- acrylamido 2-methyl propane sulphonic acid) and KSPA (potassium 3- sulphopropyl acrylate) were selected as monomers, the sulphonate group being used to mimic the natural sulphate group. These are used in dermal applications involving chronic wounds and have acceptably low cytotoxicity. Other hydrophilic carboxyl, amide and hydroxyl monomers such as 2-hydroxyethyl acrylamide, ß-carboxyethyl acrylate, acryloyl morpholine, and polyethylene glycol (meth)acrylate were used as diluents together with polyethyleneglycol di(meth)acrylate and hydrophilic multifunctional macromers as cross-linker. Redox was the chosen method of polymerisation and a range of initiators were investigated. Components were packaged in two solutions each containing a redox pair. A dual syringe method of injection into the cavity was used, the required time for polymerisation is circa 3-7 minutes. The final materials were tested using a Bohlin CVO Rheometer cycling from 0.5-25Hz at 37oC to measure the modulus. An in-house compression testing method was developed, using dialysis tubing to mimic the cavity, the gels were swelled in solutions of various osmolarity and compressed to ~ 20%. The pre-gel has also been injected into sheep spinal segments for mechanical compression testing to demonstrate the restoration of properties upon use of the gel. Results and Discussion: Two systems resulted using similar monomer compositions but different initiation and crosslinking agents. NaAMPs and KSPA were used together at a ratio of ~1:1 in both systems with 0.25-2% crosslinking agent, diacrylate or methacrylate. The two initiation systems were ascorbic acid/oxone, and N,N,N,N - tetramethylethylenediamine (TEMED)/ potassium persulphate. These systems produced gelation within 3-7 and 3-5 minutes respectively. Storage of the two component systems was shown to be stable for approximately one month after mixing, in the dark, refrigerated at 1-4oC. The gelation was carried out at 37oC. Literature values for the natural disc give elastic constants ranging from 3-8kPa. The properties of the polymer can be tailored by altering crosslink density and monomer composition and are able to match those of the natural disc. It is possible to incorporate a radio-opaque (histodenz) to enable x-ray luminescence during and after injection. At an inclusion level of 5% the gel is clearly visible and polymerisation and mechanical properties are not altered. Conclusion: A two-pac injection system which will polymerise in situ, that can incorporate a radio-opaque, has been developed. This will reinforce the damaged nucleus pulposus in degenerative disc disease restoring adequate hydration and thus biomechanical properties. Tests on sheep spine segments are currently being carried out to demonstrate that a disc containing the gel has similar properties to an intact disc in comparison to one with a damaged nucleus.
Resumo:
Polymer scaffolds play an important role in tissue engineering applications. Poly(ethylene glycol) based hydrogels have received a lot of attention in this field because of their high biocompatibility and ease of processing. However, in many cases they do not exhibit proper tissue invasion and nutrient transport because of their dense structure. In the present work, several approaches were developed and compared to each other to produce interconnected macroporous poly(ethylene glycol) hydrogels by including different types of porogens in the photocrosslinking reaction. The swelling capacity of the resulting hydrogels was analyzed and compared to non-porous hydrogel samples. Moreover, the obtained materials were characterized by means of mechanical properties and porosity using rheometry, scanning electron microscopy, and mercury intrusion porosimetry. Results showed that interconnected and uniform pores were obtained when a porogen template was used during hydrogel fabrication by photocrosslinking. On the other side, when the porogen particles were dispersed into the macromer solution before matrix photocrosslinking the interconnexion was negligible. The templates must be dissolved before the hydrogel's cell-seeding in vitro, while the dispersed porogen can be used in situ in the in vitro seeding tests. Copyright © 2013 Taylor & Francis Group, LLC.
Resumo:
Hydrogels containing carbon nanotubes (CNTs) are expected to be promising conjugates because they might show a synergic combination of properties from both materials. Most of the hybrid materials containing CNTs only entrap them physically, and the covalent attachment has not been properly addressed yet. In this study, single-walled carbon nanotubes (SWNTs) were successfully incorporated into a poly(ethylene glycol) (PEG) hydrogel by covalent bonds to form a hybrid material. For this purpose, SWNTs were functionalized with poly(ethylene glycol) methacrylate (PEGMA) to obtain water-soluble pegylated SWNTs (SWNT–PEGMA). These functionalized SWNTs were covalently bonded through their PEG moieties to a PEG hydrogel. The hybrid network was obtained from the crosslinking reaction of poly(ethylene glycol) diacrylate prepolymer and the SWNT–PEGMA by dual photo-UV and thermal initiations. The mechanical and swelling properties of the new hybrid material were studied. In addition, the material and lixiviates were analyzed to elucidate any kind of SWNT release and to evaluate a possible in vitro cytotoxic effect. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.
Resumo:
With an increasing use of emerging patterning technologies such as UV-NIL in biotechnological applications there is at the same time a raising demand for new material for such applications. Here we present a PEG based precursor mixed with a photoinitiator to make it UV sensitive as a new material aimed at biotechnological applications. Using HSQ patterned quartz stamps we observed excellent pattern replication indicating good flow properties of the resist. We were able to obtain imprints with <20 nm residual layer. The PEG based resist has hydrogel properties and it swelling in water was observed by AFM.
Resumo:
A novel transition temperature in MeAM copolymer microgels is reported. Despite the fact that MeAM homopolymers do not show thermosensitive properties, a specific synthetic strategy leads to a thermo-responsive swelling behavior that could be potentially useful in medical and/or industrial applications. The pH and temperature-dependent swelling response of microgels of MeAM copolymerized with 2-aminomethylpyridine and ethylenediamine is reported. The changes in particle sizes, which depend on the nature of the surrounding environment, are recorded by QELS. The relation between copolymer structure and its novel behavior is analyzed by several techniques (1H NMR, TGA).
Resumo:
Colloidal nanosized folate-conjugated hydrogels for targeted chemotherapy were prepared via a versatile and efficient postsynthetic modification pathway starting from P(NPA-co-NIPAM). The modifications included the introduction of 4-methylpyridine as pH-sensitive pendant groups and the conjugation of folic acid to the microgel network. The microgels showed a specific swelling at pH?6 (endosomes) as judged by DLS studies varying the external pH. The relative composition of the microgels shows a clear influence on the pH volume transition shifting. The potential of the microgels for anticancer drug release at pH?=?5.0 was confirmed. Therefore, they are a promising targeting carrier for improved anticancer chemotherapy.
Resumo:
Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation. The properties and characteristics of the formulations and tablets which were investigated included: glass transition temperature, wettability, porosity, mechanical properties, disintegration time, morphology of the internal structure of the freeze-dried tablets, and drug dissolution. The results from the pH study revealed that adjusting the pH of the formulation away from the isoelectric point of gelatin, resulted in an improvement in tablet disintegration time possibly due to increase in gelatin swelling resulting in greater tablet porosity. The results from the ionic strength study revealed that the inclusion of sodium chloride influenced tablet porosity, tablet morphology and the glass transition temperature of the formulations. Data from the milling study showed that milling the excipients influenced formulation characteristics, namely wettability and powder porosity. The study concludes that alterations of simple parameters such as pH and salt concentration have a significant influence on formulation of ODT. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves protein kinase A (PKA) activation, influx of extracellular calcium and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine- 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain oedema.
Resumo:
The successful development of compressed ODTs utilises low compression forces to create a porous structure whereby excipients are added to enhance wicking/swelling action or provide strength to the fragile tablet framework. In this work, a systematic investigation comparing materials from two different categories was employed to understand their functionality in binary mixture tablets of the most commonly used diluent mannitol. Cellulose based excipients such as HPC (SSL-SFP), L-HPC (NBD-022) and MCC (Avicel PH-102) were compared with non-cellulosic materials such as PEO (POLYOX WSR N-10) and Crospovidone (XL-10). Pure excipient properties were studied using Heckel Plot, compressibility profile, SEM and XRPD, whereas the prepared binary mixture compacts were studied for hardness, disintegration time and friability. Results from our investigation provide insight into differences encountered in product performance of ODT upon inclusion of additional materials. For example, non-cellulosic excipients Polyox and Crospovidone showed higher plasticity (Py values 588 and 450MPa) in pure form but not in binary mixtures of mannitol. Cellulosic excipients, nonetheless, offer faster disintegration (<30 sec) specifically L-HPC and MCC tablets. Disintegration time for tablets with fully substituted-HPC was prolonged (200-500 sec) upon increasing concentration between 1-10% due to gelation/matrix formation. It can be concluded that despite the reasonably good plasticity of both cellulosic and non-cellulosic excipients in pure form, the mechanical strength in binary mixtures is negatively impacted by the fragmentation/fracture effect of mannitol. © 2014 Bentham Science Publishers.