55 resultados para STATISTICAL-MECHANICS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyze, using the replica method of statistical mechanics, the theoretical performance of coded code-division multiple-access (CDMA) systems in which regular low-density parity-check (LDPC) codes are used for channel coding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A formalism for describing the dynamics of Genetic Algorithms (GAs) using method s from statistical mechanics is applied to the problem of generalization in a perceptron with binary weights. The dynamics are solved for the case where a new batch of training patterns is presented to each population member each generation, which considerably simplifies the calculation. The theory is shown to agree closely to simulations of a real GA averaged over many runs, accurately predicting the mean best solution found. For weak selection and large problem size the difference equations describing the dynamics can be expressed analytically and we find that the effects of noise due to the finite size of each training batch can be removed by increasing the population size appropriately. If this population resizing is used, one can deduce the most computationally efficient size of training batch each generation. For independent patterns this choice also gives the minimum total number of training patterns used. Although using independent patterns is a very inefficient use of training patterns in general, this work may also prove useful for determining the optimum batch size in the case where patterns are recycled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A formalism recently introduced by Prugel-Bennett and Shapiro uses the methods of statistical mechanics to model the dynamics of genetic algorithms. To be of more general interest than the test cases they consider. In this paper, the technique is applied to the subset sum problem, which is a combinatorial optimization problem with a strongly non-linear energy (fitness) function and many local minima under single spin flip dynamics. It is a problem which exhibits an interesting dynamics, reminiscent of stabilizing selection in population biology. The dynamics are solved under certain simplifying assumptions and are reduced to a set of difference equations for a small number of relevant quantities. The quantities used are the population's cumulants, which describe its shape, and the mean correlation within the population, which measures the microscopic similarity of population members. Including the mean correlation allows a better description of the population than the cumulants alone would provide and represents a new and important extension of the technique. The formalism includes finite population effects and describes problems of realistic size. The theory is shown to agree closely to simulations of a real genetic algorithm and the mean best energy is accurately predicted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We explore the dependence of performance measures, such as the generalization error and generalization consistency, on the structure and the parameterization of the prior on `rules', instanced here by the noisy linear perceptron. Using a statistical mechanics framework, we show how one may assign values to the parameters of a model for a `rule' on the basis of data instancing the rule. Information about the data, such as input distribution, noise distribution and other `rule' characteristics may be embedded in the form of general gaussian priors for improving net performance. We examine explicitly two types of general gaussian priors which are useful in some simple cases. We calculate the optimal values for the parameters of these priors and show their effect in modifying the most probable, MAP, values for the rules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The learning properties of a universal approximator, a normalized committee machine with adjustable biases, are studied for on-line back-propagation learning. Within a statistical mechanics framework, numerical studies show that this model has features which do not exist in previously studied two-layer network models without adjustable biases, e.g., attractive suboptimal symmetric phases even for realizable cases and noiseless data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neural networks have often been motivated by superficial analogy with biological nervous systems. Recently, however, it has become widely recognised that the effective application of neural networks requires instead a deeper understanding of the theoretical foundations of these models. Insight into neural networks comes from a number of fields including statistical pattern recognition, computational learning theory, statistics, information geometry and statistical mechanics. As an illustration of the importance of understanding the theoretical basis for neural network models, we consider their application to the solution of multi-valued inverse problems. We show how a naive application of the standard least-squares approach can lead to very poor results, and how an appreciation of the underlying statistical goals of the modelling process allows the development of a more general and more powerful formalism which can tackle the problem of multi-modality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This rule maximizes the total reduction in generalization error over the whole learning process. A simple example demonstrates that the locally optimal rule, which maximizes the rate of decrease in generalization error, may perform poorly in comparison.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical model is presented which describes selection in a genetic algorithm (GA) under a stochastic fitness measure and correctly accounts for finite population effects. Although this model describes a number of selection schemes, we only consider Boltzmann selection in detail here as results for this form of selection are particularly transparent when fitness is corrupted by additive Gaussian noise. Finite population effects are shown to be of fundamental importance in this case, as the noise has no effect in the infinite population limit. In the limit of weak selection we show how the effects of any Gaussian noise can be removed by increasing the population size appropriately. The theory is tested on two closely related problems: the one-max problem corrupted by Gaussian noise and generalization in a perceptron with binary weights. The averaged dynamics can be accurately modelled for both problems using a formalism which describes the dynamics of the GA using methods from statistical mechanics. The second problem is a simple example of a learning problem and by considering this problem we show how the accurate characterization of noise in the fitness evaluation may be relevant in machine learning. The training error (negative fitness) is the number of misclassified training examples in a batch and can be considered as a noisy version of the generalization error if an independent batch is used for each evaluation. The noise is due to the finite batch size and in the limit of large problem size and weak selection we show how the effect of this noise can be removed by increasing the population size. This allows the optimal batch size to be determined, which minimizes computation time as well as the total number of training examples required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of biases on the learning dynamics of a two-layer neural network, a normalized soft-committee machine, is studied for on-line gradient descent learning. Within a statistical mechanics framework, numerical studies show that the inclusion of adjustable biases dramatically alters the learning dynamics found previously. The symmetric phase which has often been predominant in the original model all but disappears for a non-degenerate bias task. The extended model furthermore exhibits a much richer dynamical behavior, e.g. attractive suboptimal symmetric phases even for realizable cases and noiseless data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyse the dynamics of a number of second order on-line learning algorithms training multi-layer neural networks, using the methods of statistical mechanics. We first consider on-line Newton's method, which is known to provide optimal asymptotic performance. We determine the asymptotic generalization error decay for a soft committee machine, which is shown to compare favourably with the result for standard gradient descent. Matrix momentum provides a practical approximation to this method by allowing an efficient inversion of the Hessian. We consider an idealized matrix momentum algorithm which requires access to the Hessian and find close correspondence with the dynamics of on-line Newton's method. In practice, the Hessian will not be known on-line and we therefore consider matrix momentum using a single example approximation to the Hessian. In this case good asymptotic performance may still be achieved, but the algorithm is now sensitive to parameter choice because of noise in the Hessian estimate. On-line Newton's method is not appropriate during the transient learning phase, since a suboptimal unstable fixed point of the gradient descent dynamics becomes stable for this algorithm. A principled alternative is to use Amari's natural gradient learning algorithm and we show how this method provides a significant reduction in learning time when compared to gradient descent, while retaining the asymptotic performance of on-line Newton's method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyse natural gradient learning in a two-layer feed-forward neural network using a statistical mechanics framework which is appropriate for large input dimension. We find significant improvement over standard gradient descent in both the transient and asymptotic phases of learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyse the matrix momentum algorithm, which provides an efficient approximation to on-line Newton's method, by extending a recent statistical mechanics framework to include second order algorithms. We study the efficacy of this method when the Hessian is available and also consider a practical implementation which uses a single example estimate of the Hessian. The method is shown to provide excellent asymptotic performance, although the single example implementation is sensitive to the choice of training parameters. We conjecture that matrix momentum could provide efficient matrix inversion for other second order algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a method for determining the globally optimal on-line learning rule for a soft committee machine under a statistical mechanics framework. This work complements previous results on locally optimal rules, where only the rate of change in generalization error was considered. We maximize the total reduction in generalization error over the whole learning process and show how the resulting rule can significantly outperform the locally optimal rule.