28 resultados para Russian energy sector


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – The international nuclear community continues to face the challenge of managing both the legacy waste and the new wastes that emerge from ongoing energy production. The UK is in the early stages of proposing a new convention for its nuclear industry, that is: waste minimisation through closely managing the radioactive source which creates the waste. This paper proposes a new technique (called waste and source material operability study (WASOP)) to qualitatively analyse a complex, waste-producing system to minimise avoidable waste and thus increase the protection to the public and the environment. Design/methodology/approach – WASOP critically considers the systemic impact of up and downstream facilities on the minimisation of nuclear waste in a facility. Based on the principles of HAZOP, the technique structures managers' thinking on the impact of mal-operations in interlinking facilities in order to identify preventative actions to reduce the impact on waste production of those mal-operations.' Findings – WASOP was tested with a small group of experienced nuclear regulators and was found to support their qualitative examination of waste minimisation and help them to work towards developing a plan of action. Originality/value – Given the newness of this convention, the wider methodology in which WASOP sits is still in development. However, this paper communicates the latest thinking from nuclear regulators on decision-making methodology for supporting waste minimisation and is hoped to form part of future regulatory guidance. WASOP is believed to have widespread potential application to the minimisation of many other forms of waste, including that from other energy sectors and household/general waste.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Energy security is a major concern for India and many rural areas remain un-electrified. Thus, innovations in sustainable technologies to provide energy services are required. Biomass and solar energy in particular are resources that are widely available and underutilised in India. This paper aims to provide an overview of a methodology that was developed for designing and assessing the feasibility of a hybrid solar-biomass power plant in Gujarat. Design/methodology/approach: The methodology described is a combination of engineering and business management studies used to evaluate and design solar thermal collectors for specific applications and locations. For the scenario of a hybrid plant, the methodology involved: the analytical hierarchy process, for solar thermal technology selection; a cost-exergy approach, for design optimisation; quality function deployment, for designing and evaluating a novel collector - termed the elevation linear Fresnel reflector (ELFR); and case study simulations, for analysing alternative hybrid plant configurations. Findings: The paper recommended that for a hybrid plant in Gujarat, a linear Fresnel reflector of 14,000 m2 aperture is integrated with a 3 tonne per hour biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR can increase savings of biomass (100 t/a) and land (9 ha/a). Research limitations/implications: The research reviewed in this paper is primarily theoretical and further work will need to be undertaken to specify plant details such as piping layout, pump sizing and structure, and assess plant performance during real operational conditions. Originality/value: The paper considers the methodology adopted proved to be a powerful tool for integrating technology selection, optimisation, design and evaluation and promotes interdisciplinary methods for improving sustainable engineering design and energy management. © Emerald Group Publishing Limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concerns over dwindling oil reserves, carbon dioxide emissions from fossil fuel sources and associated climate change is driving the urgent need for clean, renewable energy supplies. The conversion of triglycerides to biodiesel via catalytic transesterification remains an energetically efficient and attractive means to generate transportation fuel1. However, current biodiesel manufacturing routes employing soluble alkali based catalysts are very energy inefficient producing copious amounts of contaminated water waste during fuel purification. Technical advances in catalyst and reactor design and introduction of non-food based feedstocks are thus required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. This presentation will give an overview of some recent developments in the design of solid acid and base catalysts for biodiesel synthesis. A particular focus will be on the benefits of designing materials with interconnected hierarchical macro-mesoporous networks to enhance mass-transport of viscous plant oils during reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of clean, sustainable energy supplies. Biodiesel is non-toxic and biodegradable, with the potential for closed CO2 cycles and thus vastly reduced carbon footprints compared with petroleum fuels. However, current manufacturing routes employing soluble catalysts are very energy inefficient and produce copious amounts of contaminated water waste. This review highlights the significant progress made in recent years towards developing solid acid and base catalysts for biodiesel synthesis. Issues to be addressed in the future are also discussed including the introduction of non-edible oil feedstocks, as well as technical advances in catalyst and reactor design to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of clean, sustainable energy supplies. Biodiesel is a non-toxic and biodegradable fuel, with the potential for closed CO2 cycles and thus vastly reduced carbon footprints compared with petroleum. However, current manufacturing routes employing soluble catalysts are very energy inefficient, with their removal necessitating an energy intensive separation to purify biodiesel, which in turn produces copious amounts of contaminated aqueous waste. The introduction of non-food based feedstocks and technical advances in heterogeneous catalyst and reactor design are required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. Here we report on the development of tuneable solid acid and bases for biodiesel synthesis, which offer several process advantages by eliminating the quenching step and allowing operation in a continuous reactor. Significant progress has been made towards developing tuneable solid base catalysts for biodiesel synthesis, including Li/CaO [1], Mg-Al hydrotalcites [2] and calcined dolomite [3] which exhibit excellent activity for triglyceride transesterification. However, the effects of solid base strength on catalytic activity in biodiesel synthesis remains poorly understood, hampering material optimisation and commercial exploitation. To improve our understanding of factors influencing solid base catalysts for biodiesel synthesis, we have applied a simple spectroscopic method for the quantitative determination of surface basicity which is independent of adsorption probes. Such measurements reveal how the morphology and basicity of MgO nanocrystals correlate with their biodiesel synthesis activity [4]. While diverse solid acids and bases have been investigated for TAG transesterification, the micro and mesoporous nature of catalyst systems investigated to date are not optimal for the diffusion of bulky and viscous C16-C18 TAGs typical of plant oils. The final part of this presentation will address the benefits of designing porous networks comprising interconnected hierarchical macroporous and mesoporous channels (Figure 1) to enhance mass-transport properties of viscous plant oils during biodiesel synthesis [5]. References: [1] R.S. Watkins, A.F. Lee, K. Wilson, Green Chem., 2004, 6, 335. [2]D.G. Cantrell, L.J. Gillie, A.F. Lee and K. Wilson, Appl. Catal. A, 2005, 287,183. [3] C. Hardacre, A.F. Lee, J.M. Montero, L. Shellard, K.Wilson, Green Chem., 2008, 10, 654. [4] J.M. Montero, P.L. Gai, K. Wilson, A.F. Lee, Green Chem., 2009, 11, 265. [5] J. Dhainaut, J.-P. Dacquin, A.F. Lee, K. Wilson, Green Chem., 2010, 12, 296.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomass is the term given to naturally-produced organic matter resulting from photosynthesis, and represents the most abundant organic polymers on Earth. Consequently, there has been great interest in the potential exploitation of lignocellulosic biomass as a renewable feedstock for energy, materials and chemicals production. The energy sector has largely focused on the direct thermochemical processing of lignocellulose via pyrolysis/gasification for heat generation, and the co-production of bio-oils and bio-gas which may be upgraded to produce drop-in transportation fuels. This mini-review describes recent advances in the design and application of solid acid catalysts for the energy efficient upgrading of pyrolysis biofuels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

he push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organisations towards energy development projects. Design/methodology/approach This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised, and illustrated using a sample of tweets containing the term ‘bioenergy’ Findings Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable Purpose The push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organisations towards energy development projects. Design/methodology/approach This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised, and illustrated using a sample of tweets containing the term ‘bioenergy’ Findings Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable methodology, which bioenergy companies should be using to measure public opinion in the consultation process. Preliminary analysis shows promising results. Research limitations/implications Analysis is preliminary and based on a small dataset. It is intended only to illustrate the potential of sentiment analysis and not to draw general conclusions about the bioenergy sector. Originality/value Opinion mining, though established in marketing and political analysis, is not yet systematically applied as a planning consultation tool. This is a missed opportunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis begins by examining the concepts of civil society and social capital. Specifically, it outlines the role of health and education third sector organisations (TSOs) in building civil society and generating social capital which is conducive to democratisation. Following this, the thesis presents literature on civil society development in the context of the Russian Federation, highlighting a void in our understanding of health and education TSOs in this context. The literature review examines cultural-historic antecedents and their impact on civil society development. These antecedents result in three constraints which limit TSOs ability to establish civil society as an autonomous space. In light of these constraints, the thesis explores the present day realities faced by Russian TSOs and proposes that the all-dominant nature of the Russian state leads to managed civil society arrangements. Consequently the thesis addresses the question of how a managed civil society manifests itself in the context of the Russian Federation. Using a qualitative research design, the thesis investigates the control mechanisms created by legislative framework, the ability of third sector organisations to substitute for the state, and the organisational characteristics of TSOs within a managed civil society space. Based on interview data from 82 TSOs across three geographical regions, the empirical chapters explore these three aspects in-depth. Firstly, the thesis demonstrates how a specific legislative framework is used as a legally mandated method to manage civil society. Secondly, the thesis explores more subtle attempts by the state to manage civil society. And thirdly, the thesis highlights ways in which the state controls TSOs and coerces them to mimic marionette organisations. Overall, the evidence presented throughout the thesis highlights the idiosyncratic nature of managed civil society arrangements in Russia in which the state is able to control and direct civil society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this thesis is to evaluate the economic and socio-economic viability of energy crops as raw material for bioenergy schemes at the local level. The case examined is Greece, a southern Mediterranean country. Based on the current state, on foreseen trends and on the information presented in the literature review (conducted at the beginning of the study), the main goal was defined as follows: To examine the evidence supporting a strong role for dedicated energy crops local bioenergy developments in Greece, a sector that is forecasted to be increasingly important in the short to medium term.' Two perennial energy crops, cardoon (Cynara cardunculus L.) and giant reed (Arundo donax L.) were evaluated. The thesis analysed their possible introduction in the agricultural system of Rhodope, northern Greece, as alternative land use, through comparative financial appraisal with the main conventional crops. Based on the output of this comparative analysis, the breakeven for the two selected energy crops was defined along with a sensitivity analysis for the risk of the potential implementation. Following, the author performed an economic and socio-economic evaluation of a district heating system fuelled with energy crops in the selected region. Finally, the author, acknowledging that bioenergy deployment should be studied in the context of innovations proceeded in examining the different perceptions of the key groups involved, farmers and potential end users. Results indicated that biomass exploitation for energy purposes is more likely to be accepted when it is seen clearly as one strand in a national energy, environmental and agricultural policy which embraces several sources of renewable energy, and which also encourages energy efficiency and conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Faced with a future of rising energy costs there is a need for industry to manage energy more carefully in order to meet its economic objectives. A problem besetting the growth of energy conservation in the UK is that a large proportion of energy consumption is used in a low intensive manner in organisations where they would be responsibility for energy efficiency is spread over a large number of personnel who each see only small energy costs. In relation to this problem in the non-energy intensive industrial sector, an application of an energy management technique known as monitoring and targeting (M & T) has been installed at the Whetstone site of the General Electric Company Limited in an attempt to prove it as a means for motivating line management and personnel to save energy. The objective energy saving for which the M & T was devised is very specific. During early energy conservation work at the site there had been a change from continuous to intermittent heating but the maintenance of the strategy was receiving a poor level of commitment from line management and performance was some 5% - 10% less than expected. The M & T is concerned therefore with heat for space heating for which a heat metering system was required. Metering of the site high pressure hot water system posed technical difficulties and expenditure was also limited. This led to a ‘tin-house' design being installed for a price less than the commercial equivalent. The timespan of work to achieve an operational heat metering system was 3 years which meant that energy saving results from the scheme were not observed during the study. If successful the replication potential is the larger non energy intensive sites from which some 30 PT savings could be expected in the UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In India, more than one third of the population do not currently have access to modern energy services. Biomass to energy, known as bioenergy, has immense potential for addressing India’s energy poverty. Small scale decentralised bioenergy systems require low investment compared to other renewable technologies and have environmental and social benefits over fossil fuels. Though they have historically been promoted in India through favourable policies, many studies argue that the sector’s potential is underutilised due to sustainable supply chain barriers. Moreover, a significant research gap exists. This research addresses the gap by analysing the potential sustainable supply chain risks of decentralised small scale bioenergy projects. This was achieved through four research objectives, using various research methods along with multiple data collection techniques. Firstly, a conceptual framework was developed to identify and analyse these risks. The framework is founded on existing literature and gathered inputs from practitioners and experts. Following this, sustainability and supply chain issues within the sector were explored. Sustainability issues were collated into 27 objectives, and supply chain issues were categorised according to related processes. Finally, the framework was validated against an actual bioenergy development in Jodhpur, India. Applying the framework to the action research project had some significant impacts upon the project’s design. These include the development of water conservation arrangements, the insertion of auxiliary arrangements, measures to increase upstream supply chain resilience, and the development of a first aid action plan. More widely, the developed framework and identified issues will help practitioners to take necessary precautionary measures and address them quickly and cost effectively. The framework contributes to the bioenergy decision support system literature and the sustainable supply chain management field by incorporating risk analysis and introducing the concept of global and organisational sustainability in supply chains. The sustainability issues identified contribute to existing knowledge through the exploration of a small scale and developing country context. The analysis gives new insights into potential risks affecting the whole bioenergy supply chain.