20 resultados para Reverse Criticism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomerase reverse transcriptase (TERT) is a key component of the telomerase complex. By lengthening telomeres in DNA strands, TERT increases senescent cell lifespan. Mice that lack TERT age much faster and exhibit age-related conditions such as osteoporosis, diabetes and neurodegeneration. Accelerated telomere shortening in both human and animal models has been documented in conditions associated with insulin resistance, including T2DM. We investigated the role of TERT, in regulating cellular glucose utilisation by using the myoblastoma cell line C2C12, as well as primary mouse and human skeletal muscle cells. Inhibition of TERT expression or activity by using siRNA (100. nM) or specific inhibitors (100. nM) reduced basal 2-deoxyglucose uptake by ~. 50%, in all cell types, without altering insulin responsiveness. In contrast, TERT over-expression increased glucose uptake by 3.25-fold. In C2C12 cells TERT protein was mostly localised intracellularly and stimulation of cells with insulin induced translocation to the plasma membrane. Furthermore, co-immunoprecipitation experiments in C2C12 cells showed that TERT was constitutively associated with glucose transporters (GLUTs) 1, 4 and 12 via an insulin insensitive interaction that also did not require intact PI3-K and mTOR pathways. Collectively, these findings identified a novel extra-nuclear function of TERT that regulates an insulin-insensitive pathway involved in glucose uptake in human and mouse skeletal muscle cells. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desalination of seawater driven by solar and other sustainable energy sources could in principle fulfil the growing needs of the world's most water-stressed countries. Reverse osmosis (RO) has become the most efficient process for desalination, making it the technology of choice for use with solar energy, and photovoltaics (PV) has become the most successful technology for solar energy conversion. But despite recent gains in the efficiency of PV-RO, substantial improvements are still possible because of the numerous energy losses occurring between input of sunlight and output of freshwater. This chapter gives an overview of some of the research activities and recent advances that could ultimately result in solar-powered RO systems becoming more than 10 times efficient than today. It also describes advances in waste heat recovery for RO desalination that are yielding greatly improved performance over desalination processes based on distillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical ZnO “rod like” architecture was successfully synthesized via reverse micellar route and characterized by various techniques. The FESEM studies show controlled decomposition of zinc oxalate into ZnO “rod like” architecture at 500 °C with slow heat rate at 1°/min. Interestingly, improved photocatalytic activity was observed for the degradation of Rhodamine B, due to the self assembly of hexagonal nanoparticles of zinc oxide forming hierarchical ZnO “rod like” architecture which can greatly enhance the light utilization rate due to its special architecture and enlarge the specific surface area, providing more reaction sites and promoting mass transfer. More importantly, the reusability studies of this architecture were most economical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of renewable energy with desalination technologies has emerged as an attractive solution to augment fresh water supply sustainably. Fouling and scaling are still considered as limiting factors in membrane desalination processes. For brackish water treatment, pre-treatment of reverse osmosis (RO) feed water is a key step in designing RO plants avoiding membrane fouling. This study aims to compare at pilot scale the rejection efficiency of RO membranes with multiple pre-treatment options at different water recoveries (30, 35, 40, 45 and 50%) and TDS concentrations (3500, 4000, and 4500mg/L). Synthetic brackish water was prepared and performance evaluation were carried out using brackish water reverse osmosis (BWRO) membranes (Filmtec LC-LE-4040 and Hydranautics CPA5-LD-4040) preceded by 5 and 1μm cartridge filters, 0.02μm ultra-filtration (UF) membrane, and forward osmosis (FO) membrane using 0.25M NaCl and MgCl2 as draw solutions (DS). It was revealed that FO membrane with 0.25M MgCl2 used as a draw solution (DS) and Ultra-filtration (UF) membrane followed by Filmtec membrane gave overall 98% rejection but UF facing high fouling potential due to high applied pressure. Use of 5 and 1μm cartridge filter prior to Filmtec membrane also showed effective results with 95% salt rejection.