20 resultados para Refinery sludge


Relevância:

20.00% 20.00%

Publicador:

Resumo:

De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of the oil phase obtained from intermediate pyrolysis process was used for this investigation. The analysis was based on standard methods of determining kinematic viscosity, gas - chromatography / mass - spectrometry for compositional changes, FT-IR for functional group, Karl Fischer titration for water content and bomb calorimeter for higher heaating values. The methods were used to determine changes that occurred during ageing. The temperatures used for thermal testing were 60 °C and 80 °C for the periods of 72 and 168 h. Methanol and biodiesel were used as solvents for the analysis. The bio-oil samples contained 10 % methanol, 10 % Biodiesel, 20 % Biodiesel and unstabilised pyrolysis oil. The tests carried out at 80 °C showed drastic changes compared to those at 60 °C. The bio-oil samples containing 20 % biodiesel proved to be more stable than those with 10 % methanol. The unstabilised pyrolysis oil showed the greatest changes in viscosity, composition change and highest increase in water content. The measurement of kinematic viscosity and gas chromatograph mass spectrometry were found to be more reliable for predicting the ageing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.