19 resultados para Recording instruments
Resumo:
Aims: To survey eye care practitioners from around the world regarding their current practice for anterior eye health recording to inform guidelines on best practice. Methods: The on-line survey examined the reported use of: word descriptions, sketching, grading scales or photographs; paper or computerised record cards and whether these were guided by proforma headings; grading scale choice, signs graded, level of precision, regional grading; and how much time eye care practitioners spent on average on anterior eye health recording. Results: Eight hundred and nine eye care practitioners from across the world completed the survey. Word description (p <. 0.001), sketches (p = 0.002) and grading scales (p <. 0.001) were used more for recording the anterior eye health of contact lens patients than other patients, but photography was used similarly (p = 0.132). Of the respondents, 84.5% used a grading scale, 13.5% using two, with the original Efron (51.6%) and CCLRU/Brien-Holden-Vision-Institute (48.5%) being the most popular. The median features graded was 11 (range 1-23), frequency from 91.6% (bulbar hyperaemia) to 19.6% (endothelial blebs), with most practitioners grading to the nearest unit (47.4%) and just 14.7% to one decimal place. The average time taken to report anterior eye health was reported to be 6.8. ±. 5.7. min, with the maximum time available 14.0. ±. 11. min. Conclusions: Developed practice and research evidence allows best practice guidelines for anterior eye health recording to be recommended. It is recommended to: record which grading scale is used; always grade to one decimal place, record what you see live rather than based on how you intend to manage a condition; grade bulbar and limbal hyperaemia, limbal neovascularisation, conjunctival papillary redness and roughness (in white light to assess colouration with fluorescein instilled to aid visualisation of papillae/follicles), blepharitis, meibomian gland dysfunction and sketch staining (both corneal and conjunctival) at every visit. Record other anterior eye features only if they are remarkable, but indicate that the key tissue which have been examined.
Resumo:
Long term recording of biomedical signals such as ECG, EMG, respiration and other information (e.g. body motion) can improve diagnosis and potentially monitor the evolution of many widespread diseases. However, long term monitoring requires specific solutions, portable and wearable equipment that should be particularly comfortable for patients. The key-issues of portable biomedical instrumentation are: power consumption, long-term sensor stability, comfortable wearing and wireless connectivity. In this scenario, it would be valuable to realize prototypes using available technologies to assess long-term personal monitoring and foster new ways to provide healthcare services. The aim of this work is to discuss the advantages and the drawbacks in long term monitoring of biopotentials and body movements using textile electrodes embedded in clothes. The textile electrodes were embedded into garments; tiny shirt and short were used to acquire electrocardiographic and electromyographic signals. The garment was equipped with low power electronics for signal acquisition and data wireless transmission via Bluetooth. A small, battery powered, biopotential amplifier and three-axes acceleration body monitor was realized. Patient monitor incorporates a microcontroller, analog-to-digital signal conversion at programmable sampling frequencies. The system was able to acquire and to transmit real-time signals, within 10 m range, to any Bluetooth device (including PDA or cellular phone). The electronics were embedded in the shirt resulting comfortable to wear for patients. Small size MEMS 3-axes accelerometers were also integrated. © 2011 IEEE.
Resumo:
A method of accurately controlling the position of a mobile robot using an external large volume metrology (LVM) instrument is presented in this article. By utilising an LVM instrument such as a laser tracker or indoor GPS (iGPS) in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real-time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitisation scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. Further, iGPS guidance of a small KUKA omni-directional robot has been demonstrated, and a full scale prototype system is being developed in cooperation with KUKA Robotics, UK. © 2011 Taylor & Francis.
Resumo:
Measurement and verification of products and processes during the early design is attracting increasing interest from high value manufacturing industries. Measurement planning is deemed as an effective means to facilitate the integration of the metrology activity into a wider range of production processes. However, the literature reveals that there are very few research efforts in this field, especially regarding large volume metrology. This paper presents a novel approach to accomplish instruments selection, the first stage of measurement planning process, by mapping measurability characteristics between specific measurement assignments and instruments.