18 resultados para Reconhecimento Facial
Resumo:
When we see a stranger's face we quickly form impressions of his or her personality, and expectations of how the stranger might behave. Might these intuitive character judgements bias source monitoring? Participants read headlines "reported" by a trustworthy- and an untrustworthy-looking reporter. Subsequently, participants recalled which reporter provided each headline. Source memory for likely-sounding headlines was most accurate when a trustworthy-looking reporter had provided the headlines. Conversely, source memory for unlikely-sounding headlines was most accurate when an untrustworthy-looking reporter had provided the headlines. This bias appeared to be driven by the use of decision criteria during retrieval rather than differences in memory encoding. Nevertheless, the bias was apparently unrelated to variations in subjective confidence. These results show for the first time that intuitive, stereotyped judgements of others' appearance can bias memory attributions analogously to the biases that occur when people receive explicit information to distinguish sources. We suggest possible real-life consequences of these stereotype-driven source-monitoring biases. © 2010 Psychology Press.
Resumo:
Holistic face perception, i.e. the mandatory integration of featural information across the face, hasbeen considered to play a key role when recognizing emotional face expressions (e.g., Tanaka et al.,2002). However, despite their early onset holistic processing skills continue to improvethroughout adolescence (e.g., Schwarzer et al., 2010) and therefore might modulate theevaluation of facial expressions. We tested this hypothesis using an attentional blink (AB)paradigm to compare the impact of happy, fearful and neutral faces in adolescents (10–13 years)and adults on subsequently presented neutral target stimuli (animals, plants and objects) in a rapidserial visual presentation stream. Adolescents and adults were found to be equally reliable whenreporting the emotional expression of the face stimuli. However, the detection of emotional butnot neutral faces imposed a significantly stronger AB effect on the detection of the neutral targetsin adults compared to adolescents. In a control experiment we confirmed that adolescents ratedemotional faces lower in terms of valence and arousal than adults. The results suggest a protracteddevelopment of the ability to evaluate facial expressions that might be attributed to the latematuration of holistic processing skills.
Resumo:
Background: Identifying biological markers to aid diagnosis of bipolar disorder (BD) is critically important. To be considered a possible biological marker, neural patterns in BD should be discriminant from those in healthy individuals (HI). We examined patterns of neuromagnetic responses revealed by magnetoencephalography (MEG) during implicit emotion-processing using emotional (happy, fearful, sad) and neutral facial expressions, in sixteen BD and sixteen age- and gender-matched healthy individuals. Methods: Neuromagnetic data were recorded using a 306-channel whole-head MEG ELEKTA Neuromag System, and preprocessed using Signal Space Separation as implemented in MaxFilter (ELEKTA). Custom Matlab programs removed EOG and ECG signals from filtered MEG data, and computed means of epoched data (0-250ms, 250-500ms, 500-750ms). A generalized linear model with three factors (individual, emotion intensity and time) compared BD and HI. A principal component analysis of normalized mean channel data in selected brain regions identified principal components that explained 95% of data variation. These components were used in a quadratic support vector machine (SVM) pattern classifier. SVM classifier performance was assessed using the leave-one-out approach. Results: BD and HI showed significantly different patterns of activation for 0-250ms within both left occipital and temporal regions, specifically for neutral facial expressions. PCA analysis revealed significant differences between BD and HI for mild fearful, happy, and sad facial expressions within 250-500ms. SVM quadratic classifier showed greatest accuracy (84%) and sensitivity (92%) for neutral faces, in left occipital regions within 500-750ms. Conclusions: MEG responses may be used in the search for disease specific neural markers.