22 resultados para Real systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Third Generation cellular communication systems are expected to support mixed cell architecture in which picocells, microcells and macrocells are used to achieve full coverage and increase the spectral capacity. Supporting higher numbers of mobile terminals and the use of smaller cells will result in an increase in the number of handovers, and consequently an increase in the time delays required to perform these handovers. Higher time delays will generate call interruptions and forced terminations, particularly for time sensitive applications like real-time multimedia and data services. Currently in the Global System for Mobile communications (GSM), the handover procedure is initiated and performed by the fixed part of the Public Land Mobile Network (PLMN). The mobile terminal is only capable of detecting candidate base stations suitable for the handover; it is the role of the network to interrogate a candidate base station for a free channel. Handover signalling is exchanged via the fixed network and the time delay required to perform the handover is greatly affected by the levels of teletraffic handled by the network. In this thesis, a new handover strategy is developed to reduce the total time delay for handovers in a microcellular system. The handover signalling is diverted from the fixed network to the air interface to prevent extra delays due to teletraffic congestion, and to allow the mobile terminal to exchange signalling directly with the candidate base station. The new strategy utilises Packet Reservation Multiple Access (PRMA) technique as a mechanism to transfer the control of the handover procedure from the fixed network to the mobile terminal. Simulation results are presented to show a dramatic reduction in the handover delay as compared to those obtained using fixed channel allocation and dynamic channel allocation schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is concerned with the development of distributed real-time systems, in which software is used for the control of concurrent physical processes. These distributed control systems are required to periodically coordinate the operation of several autonomous physical processes, with the property of an atomic action. The implementation of this coordination must be fault-tolerant if the integrity of the system is to be maintained in the presence of processor or communication failures. Commit protocols have been widely used to provide this type of atomicity and ensure consistency in distributed computer systems. The objective of this research is the development of a class of robust commit protocols, applicable to the coordination of distributed real-time control systems. Extended forms of the standard two phase commit protocol, that provides fault-tolerant and real-time behaviour, were developed. Petri nets are used for the design of the distributed controllers, and to embed the commit protocol models within these controller designs. This composition of controller and protocol model allows the analysis of the complete system in a unified manner. A common problem for Petri net based techniques is that of state space explosion, a modular approach to both the design and analysis would help cope with this problem. Although extensions to Petri nets that allow module construction exist, generally the modularisation is restricted to the specification, and analysis must be performed on the (flat) detailed net. The Petri net designs for the type of distributed systems considered in this research are both large and complex. The top down, bottom up and hybrid synthesis techniques that are used to model large systems in Petri nets are considered. A hybrid approach to Petri net design for a restricted class of communicating processes is developed. Designs produced using this hybrid approach are modular and allow re-use of verified modules. In order to use this form of modular analysis, it is necessary to project an equivalent but reduced behaviour on the modules used. These projections conceal events local to modules that are not essential for the purpose of analysis. To generate the external behaviour, each firing sequence of the subnet is replaced by an atomic transition internal to the module, and the firing of these transitions transforms the input and output markings of the module. Thus local events are concealed through the projection of the external behaviour of modules. This hybrid design approach preserves properties of interest, such as boundedness and liveness, while the systematic concealment of local events allows the management of state space. The approach presented in this research is particularly suited to distributed systems, as the underlying communication model is used as the basis for the interconnection of modules in the design procedure. This hybrid approach is applied to Petri net based design and analysis of distributed controllers for two industrial applications that incorporate the robust, real-time commit protocols developed. Temporal Petri nets, which combine Petri nets and temporal logic, are used to capture and verify causal and temporal aspects of the designs in a unified manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed digital control systems provide alternatives to conventional, centralised digital control systems. Typically, a modern distributed control system will comprise a multi-processor or network of processors, a communications network, an associated set of sensors and actuators, and the systems and applications software. This thesis addresses the problem of how to design robust decentralised control systems, such as those used to control event-driven, real-time processes in time-critical environments. Emphasis is placed on studying the dynamical behaviour of a system and identifying ways of partitioning the system so that it may be controlled in a distributed manner. A structural partitioning technique is adopted which makes use of natural physical sub-processes in the system, which are then mapped into the software processes to control the system. However, communications are required between the processes because of the disjoint nature of the distributed (i.e. partitioned) state of the physical system. The structural partitioning technique, and recent developments in the theory of potential controllability and observability of a system, are the basis for the design of controllers. In particular, the method is used to derive a decentralised estimate of the state vector for a continuous-time system. The work is also extended to derive a distributed estimate for a discrete-time system. Emphasis is also given to the role of communications in the distributed control of processes and to the partitioning technique necessary to design distributed and decentralised systems with resilient structures. A method is presented for the systematic identification of necessary communications for distributed control. It is also shwon that the structural partitions can be used directly in the design of software fault tolerant concurrent controllers. In particular, the structural partition can be used to identify the boundary of the conversation which can be used to protect a specific part of the system. In addition, for certain classes of system, the partitions can be used to identify processes which may be dynamically reconfigured in the event of a fault. These methods should be of use in the design of robust distributed systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing emphasis on the use of software to control safety critical plants for a wide area of applications. The importance of ensuring the correct operation of such potentially hazardous systems points to an emphasis on the verification of the system relative to a suitably secure specification. However, the process of verification is often made more complex by the concurrency and real-time considerations which are inherent in many applications. A response to this is the use of formal methods for the specification and verification of safety critical control systems. These provide a mathematical representation of a system which permits reasoning about its properties. This thesis investigates the use of the formal method Communicating Sequential Processes (CSP) for the verification of a safety critical control application. CSP is a discrete event based process algebra which has a compositional axiomatic semantics that supports verification by formal proof. The application is an industrial case study which concerns the concurrent control of a real-time high speed mechanism. It is seen from the case study that the axiomatic verification method employed is complex. It requires the user to have a relatively comprehensive understanding of the nature of the proof system and the application. By making a series of observations the thesis notes that CSP possesses the scope to support a more procedural approach to verification in the form of testing. This thesis investigates the technique of testing and proposes the method of Ideal Test Sets. By exploiting the underlying structure of the CSP semantic model it is shown that for certain processes and specifications the obligation of verification can be reduced to that of testing the specification over a finite subset of the behaviours of the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The software underpinning today’s IT systems needs to adapt dynamically and predictably to rapid changes in system workload, environment and objectives. We describe a software framework that achieves such adaptiveness for IT systems whose components can be modelled as Markov chains. The framework comprises (i) an autonomic architecture that uses Markov-chain quantitative analysis to dynamically adjust the parameters of an IT system in line with its state, environment and objectives; and (ii) a method for developing instances of this architecture for real-world systems. Two case studies are presented that use the framework successfully for the dynamic power management of disk drives, and for the adaptive management of cluster availability within data centres, respectively.