16 resultados para Randall-Sundrum
Filtro por publicador
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (35)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (51)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (2)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (9)
- Dalarna University College Electronic Archive (1)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (7)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (3)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (9)
- Harvard University (5)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (9)
- Línguas & Letras - Unoeste (1)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (18)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (16)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (17)
- Queensland University of Technology - ePrints Archive (27)
- Repositorio Académico de la Universidad Nacional de Costa Rica (3)
- Repositorio de la Vicerrectoría de Investigación de la Universidad de Costa Rica (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (36)
- School of Medicine, Washington University, United States (3)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad del Rosario, Colombia (20)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (5)
- University of Michigan (186)
- University of Queensland eSpace - Australia (11)
- University of Washington (3)
- USA Library of Congress (1)
- WestminsterResearch - UK (1)
Resumo:
Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.