130 resultados para Raman,
Resumo:
A multiwavelength generation in a random distributed feedback fiber laser based on hybrid Raman and erbium gain and a Lyot all-fiber spectral filter is demonstrated for the first time. The use of erbium-doped fiber allows a multi-wavelength generation to be achieved at lower pump powers in comparison with random fiber lasers based on Raman gain only. The operating bandwidth and flatness of power distribution between different lines in generation are also improved in the hybrid gain configuration.
Resumo:
Using a cavity mode model we study numerically the impact of bandwidth and spectral response profile of fibre Bragg gratings on four-wave-mixing-induced spectral broadening of radiation generated in 6 km and 22 km SMF-based Raman fibre lasers.
Resumo:
Impairments characterization and performance evaluation of Raman amplified unrepeated DP-16QAM transmissions are conducted. Experimental results indicate that small gain in forward direction enhance the system signal-to-noise ratio for longer reach without introducing noticeable penalty.
Resumo:
We study the impact of the shape of fibre Bragg gratings spectral reflectivity on spectral broadening in a 10 km Raman fibre laser. We show that, at high powers, spectral characteristics are determined by intra-cavity processes rather than by the gratings profile.
Resumo:
The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold.
Resumo:
We review recent advances in all-optical OFDM technologies and discuss the performance of a field trial of a 2 Tbit/s Coherent WDM over 124 km with distributed Raman amplification. The results indicate that careful optimisation of the Raman pumps is essential. We also consider how all-optical OFDM systems perform favourably against energy consumption when compared with alternative coherent detection schemes. We argue that, in an energy constrained high-capacity transmission system, direct detected all-optical OFDM with `ideal' Raman amplification is an attractive candidate for metro area datacentre interconnects with ~100 km fibre spans, with an overall energy requirement at least three times lower than coherent detection techniques.
Resumo:
We present a concept for all-optical differential phase-shift keying (DPSK) signal regeneration, based on a new design of Raman amplified nonlinear loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase noise reduction in high-speed DPSK systems by use of the RA-NOLM combined with spectral filtering.
Resumo:
We present a concept for all-optical regeneration of signals modulated in phase-sensitive modulation formats, which is based on a new design of Raman amplified nonlinear optical loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase-noise reduction in high-speed differential phase-shift-keying transmission systems by use of the RA-NOLM combined with spectral filtering.
Resumo:
We analyze pulse propagation in an optical fiber with a periodic dispersion map and distributed amplification. Using an asymptotic theory and a momentum method, we identify a family of dispersion management schemes that are advantageous for massive multichannel soliton transmission. For the case of two-step dispersion maps with distributed Raman amplification to compensate for the fiber loss, we find special schemes that have optimal (chirp-free) launch point locations that are independent of the fiber dispersion. Despite the variation of dispersion with wavelength due to the fiber dispersion slope, the transmission in several different channels can be optimized simultaneously using the same optimal launch point. The theoretical predictions are verified by direct numerical simulations. The obtained results are applied to a practical multichannel transmission system.
Resumo:
Using an asymptotic theory and a momentum method, we identify a family of dispersion management schemes with distributed Raman amplification, which are advantageous for massive multichannel soliton transmission. For the case of two-step dispersion maps, special schemes are found that have optimal (chirp-free) launch point locations that are independent of the fibre dispersion. Despite the variation of dispersion with wavelength due to the fibre dispersion slope, the transmission in several different channels can be optimized simultaneously using the same optimal launch point. The theoretical results are verified by direct numerical simulations.
Resumo:
We present results on characterization of lasers with ultra-long cavity lengths up to 84km, the longest cavity ever reported. We have analyzed the mode structure, shape and width of the generated spectra, intensity fluctuations depending on length and intra-cavity power. The RF spectra exhibit an ultra-dense cavity mode structure (mode spacing is 1.2kHz for 84km), in which the width of the mode beating is proportional to the intra-cavity power while the optical spectra broaden with power according to the square-root law acquiring a specific shape with exponential wings. A model based on wave turbulence formalism has been developed to describe the observed effects.
Resumo:
We report on a theoretical study of activated polarization pulling and de-correlation of signal and pump states of polarization based on an advanced vector model of a fiber Raman amplifier accounting for random birefringence and two-scale fiber spinning. As a result, we have found that it is possible to provide de-correlation and simultaneously suppress PDG and PMD to 1.2 dB and 0.035 ps/km1/2 respectively.
Resumo:
We report a theoretical study and simulations of a novel fiber-spin tailoring technique to suppress the polarization impairments, namely polarization mode dispersion and polarization dependent gain (PDG), in fiber Raman amplifiers. Whereas use of depolarizer or multiplexing pump laser diodes with a final degree of pump polarization of 1% for periodically spun fiber results in PDG of about 0.3 dB, we demonstrate that application of just a two-section fiber (where the first part is short and has no spin, and the second one is periodically spun) can reduce the PDG to as low as below 0.1 dB.
Resumo:
We report on a theoretical study of polarization impairments in periodically spun fiber Raman amplifiers. Based on the Stochastic Generator approach we have derived averaged equations to calculate polarization dependent gain and mean-square gain fluctuations. We show that periodically spun fiber can work as a Raman polarizer but it suffers from increased polarization dependent gain and gain fluctuations. Unlike this, application of a depolarizer can result in suppression of polarization dependent gain and gain fluctuations. We demonstrate that it is possible to design a new fiber Raman polarizer by combining a short fiber without spin and properly chosen parameters and a long periodically spun fiber. This polarizer provides almost the same polarization pulling for all input signal states of polarization and so has very small polarization dependent gain.