25 resultados para Radial Modulus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few years Data Envelopment Analysis (DEA) has been gaining increasing popularity as a tool for measuring efficiency and productivity of Decision Making Units (DMUs). Conventional DEA models assume non-negative inputs and outputs. However, in many real applications, some inputs and/or outputs can take negative values. Recently, Emrouznejad et al. [6] introduced a Semi-Oriented Radial Measure (SORM) for modelling DEA with negative data. This paper points out some issues in target setting with SORM models and introduces a modified SORM approach. An empirical study in bank sector demonstrates the applicability of the proposed model. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project evaluates the benefits of meshing existing 11kV radial networks in order to reduce losses and maximise the connection of low carbon distributed generation. These networks are often arranged as radial feeders with normally-open links between two of the feeders; the link is closed only to enable continuity of supply to an isolated portion of a feeder following a fault on the network. However, this link could also be closed permanently thus operating the network as a meshed topology under non-faulted conditions. The study will look at loss savings and the addition of distributed generation on a typical network under three different scenarios; traditional radial feeders, fixed meshed network and a dynamic meshed network. The networks are compared in terms of feeder losses, capacity, voltage regulation and fault levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of submicron-height sine-like relief of a trifocal diffractive zone plate using a nanoimprinting technique is studied. The zone plate is intended for use in combined trifocal diffractive-refractive lenses and provides the possibility to form trifocal intraocular lenses with predetermined light intensity distribution between foci. The optical properties of the designed zone plate having the optical powers 3 D, 0, -3D in the three main diffraction orders are theoretically and experimentally investigated. The results of the theoretical investigations are in good agreement with experimental measurements. The effects of the pupil size (lens diameter) as well as the wavelength-dependent behavior of the zone plate are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asphalt mixtures exhibit primary, secondary, and tertiary stages in sequence during a rutting deterioration. Many field asphalt pavements are still in service even when the asphalt layer is in the tertiary stage, and rehabilitation is not performed until a significant amount of rutting accompanied by numerous macrocracks is observed. The objective of this study was to provide a mechanistic method to model the anisotropic cracking of the asphalt mixtures in compression during the tertiary stage of rutting. Laboratory tests including nondestructive and destructive tests were performed to obtain the viscoelastic and viscofracture properties of the asphalt mixtures. Each of the measured axial and radial total strains in the destructive tests were decomposed into elastic, plastic, viscoelastic, viscoplastic, and viscofracture strains using the pseudostrain method in an extended elastic-viscoelastic correspondence principle. The viscofracture strains are caused by the crack growth, which is primarily signaled by the increase of phase angle in the tertiary flow. The viscofracture properties are characterized using the anisotropic damage densities (i.e., the ratio of the lost area caused by cracks to the original total area in orthogonal directions). Using the decomposed axial and radial viscofracture strains, the axial and radial damage densities were determined by using a dissipated pseudostrain energy balance principle and a geometric analysis of the cracks, respectively. Anisotropic pseudo J-integral Paris' laws in terms of damage densities were used to characterize the evolution of the cracks in compression. The material constants in the Paris' law are determined and found to be highly correlated. These tests, analysis, and modeling were performed on different asphalt mixtures with two binders, two air void contents, and three aging periods. Consistent results were obtained; for instance, a stiffer asphalt mixture is demonstrated to have a higher modulus, a lower phase angle, a greater flow number, and a larger n1 value (exponent of Paris' law). The calculation of the orientation of cracks demonstrates that the asphalt mixture with 4% air voids has a brittle fracture and a splitting crack mode, whereas the asphalt mixture with 7% air voids tends to have a ductile fracture and a diagonal sliding crack mode. Cracks of the asphalt mixtures in compression are inclined to propagate along the direction of the external compressive load. © 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to demonstrate using weak form partial differential equation (PDE) method for a finite-element (FE) modeling of a new constitutive relation without the need of user subroutine programming. The viscoelastic asphalt mixtures were modeled by the weak form PDE-based FE method as the examples in the paper. A solid-like generalized Maxwell model was used to represent the deforming mechanism of a viscoelastic material, the constitutive relations of which were derived and implemented in the weak form PDE module of Comsol Multiphysics, a commercial FE program. The weak form PDE modeling of viscoelasticity was verified by comparing Comsol and Abaqus simulations, which employed the same loading configurations and material property inputs in virtual laboratory test simulations. Both produced identical results in terms of axial and radial strain responses. The weak form PDE modeling of viscoelasticity was further validated by comparing the weak form PDE predictions with real laboratory test results of six types of asphalt mixtures with two air void contents and three aging periods. The viscoelastic material properties such as the coefficients of a Prony series model for the relaxation modulus were obtained by converting from the master curves of dynamic modulus and phase angle. Strain responses of compressive creep tests at three temperatures and cyclic load tests were predicted using the weak form PDE modeling and found to be comparable with the measurements of the real laboratory tests. It was demonstrated that the weak form PDE-based FE modeling can serve as an efficient method to implement new constitutive models and can free engineers from user subroutine programming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have systematically measured the differential stress-optic coefficient, ΔC, and Young's modulus, E, in a number of PMMA fibers drawn with different stress, ranging from 2 up to 27 MPa. Effect of temperature annealing on those parameters was also investigated. ΔC was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ΔC in PMMA fibers has a negative sign and ranges from -4.5 to -1.5×10-12 Pa -1 depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ΔC. The dependence of ΔC and initial birefringence upon drawing stress is nonlinear and gradually saturates for higher drawing stress. Moreover, we find that ΔC is linearly proportional to initial fiber birefringence and that annealing the fiber has no impact on the slope of this dependence. On the other hand, no clear dependence was observed between the fiber drawing stress and the Young's modulus of the fibers as measured using microscopic digital image correlation with the fibers tensioned using an Instron tension tester. © 2010 SPIE.