17 resultados para RELIABILITY-BASED OPTIMIZATION
Resumo:
It is a crucial task to evaluate the reliability of manufacturing process in product development process. Process reliability is a measurement of production ability of reconfigurable manufacturing system (RMS), which serves as an integrated performance indicator of the production process under specified technical constraints, including time, cost and quality. An integration framework of manufacturing process reliability evaluation is presented together with product development process. A mathematical model and algorithm based on universal generating function (UGF) is developed for calculating the reliability of manufacturing process with respect to task intensity and process capacity, which are both independent random variables. The rework strategies of RMS are analyzed under different task intensity based on process reliability is presented, and the optimization of rework strategies based on process reliability is discussed afterwards.
Resumo:
A mild template removal of microcrystalline beta zeolite, based on Fenton chemistry, was optimized. Fenton detemplation was studied in terms of applicability conditions window, reaction rate and scale up. TGA and CHN elemental analysis were used to evaluate the detemplation effectiveness, while ICP, XRD, LPHR-Ar physisorption, and 27Al MAS NMR were applied to characterize the structure and texture of the resulting materials. The material properties were compared to calcination. By understanding the interplay of relevant parameters of the Fenton chemistry, the process can be optimized in order to make it industrially attractive for scale-up. The H2O2 utilization can be minimized down to 15 mL H2O2/g (88 °C, 30 ppm Fe), implying a high solid concentration and low consumption of H2O2. When Fe concentration must be minimized, values as low as 5 ppm Fe can be applied (88 °C, 30 mL H2O2/g), to achieve full detemplation. The reaction time to completeness can be reduced to 5 h when combining a Fe-oxalate catalyst with UV radiation. The protocol was scaled up to 100 times larger its original recipe. In terms of the material's properties, the scaled material is structurally comparable to the calcined counterpart (comparable Si/Al and XRD patterns), while it displays benefits in terms of texture and Al-coordination, the latter with full preservation of the tetrahedral Al