27 resultados para Quartz crystals
Resumo:
In this paper, we investigate SHG efficiency dependency on crystal length. Four periodically-poled MgSLT crystals (PPMgSLT) of 2, 4, 11 and 25 mm in length were used, for intracavity frequency doubling of an optically-pumped GalnNAs semiconductor disk laser.
Resumo:
The aerobic selective oxidation (selox) of alcohols represents an environmentally benign and atom efficient chemical valorisation route to commercially important allylic aldehydes, such as crotonaldehyde and cinnamaldehyde, which find application in pesticides, fragrances and food additives. Palladium nanoparticles are highly active and selective heterogeneous catalysts for such oxidative dehydrogenations, permitting the use of air (or dioxygen) as a green oxidant in place of stoichiometric chromate permanganate saltsor H2O2. Here we discuss how time-resolved, in-situ X-ray spectroscopies (XAS and XPS) reveal dynamic restructuring of dispersed Pd nanoparticles and Pd single-crystals in response to changing reaction environments, and thereby identify surface PdO as the active species responsible for palladium catalysed crotyl alcohol selox (Figure 1); on-stream reduction to palladium metal under oxygen-poor regimes thus appears the primary cause of catalyst deactivation. This insight has guided the subsequent application of surfactant-templating and inorganic nanocrystal methodologies to optimize the density of desired active PdO sites for the selective oxidation of natural products such as sesquiterpenoids.
Resumo:
The precipitation of chromium-containing phases, in both the B2 type β-phase coating matrix (nominally NiAl) and the substrate of high-activity-pack-aluminized single crystals of a nickel-base superalloy, is considered in this paper. An ‘edge-on’ transmission electron microscopy (TEM) technique is employed to examine the precipitation of M23X6, σ, α-Cr and other phases after coating and diffusion treatment and subsequent post-coating treatment at 850 and 950 °C. Initial precipitation is dominated by the formation of M23X6 in both the coating and substrate, however, in the case of single-crystal substrates the formation of this carbon-rich phase is not sustained. M23X6 precipitation is superceded by the formation of coherent precipitates of the α-Cr phase which effectively retains the basis but removes the superlattice of the β-matrix. Extensive precipitation of α-Cr has the effect of changing the balance of chromium to molybdenum in solution in the β-phase and further precipitation is dominated by Σ-phase intermetallics and other Cr-Mo-containing phases.
Resumo:
An investigation has been made of the microstructural stability of aluminide diffusion coatings during post-coating thermal exposure. This study has employed edge-on transmission electron microscopy to examine high-activity pack aluminised single crystals of a gamma prime strengthened nickel-base superalloy. The influence of exposure temperature, duration and atmosphere as well as the initial coating thickness has been assessed. Two major processes have been found to contribute to microstructural changes in the coating. These are, firstly, the transformation of the coating matrix (β-phase, nominally NiAl) to other Ni-Al based phases, especially γ' (nominally Ni3(Al, Ti)) and, secondly, the precipitation of chromium containing phases. The work has enabled the roles of three processes contributing to γ formation, namely: oxidation of the coating surface, interdiffusion with the substrate and ageing of the coating, to be understood. In addition, the factors leading to the formation of a sequence of chromium-containing phases have been identified.
Resumo:
The wettability of the (001), (100), and (011) crystallographic facets of macroscopic aspirin crystals has been experimentally investigated using a sessile drop contact angle (θ) method. θ for a nonpolar liquid was very similar for all three facets, though significant θ differences were observed for three polar probe liquids. The observed hydrophobicity of the (001) and (100) facets is ascribed to a reduced hydrogen bonding potential at these surfaces, whilst the observed hydrophilicity of facet (011) may be attributed to presence of surface carboxylic functionalities as confirmed by X-ray photoelectron spectroscopy (XPS). The dispersive component of the surface free energy (γ) was similar for all three facets (35 ± 2 mJ/m). The total surface energy, γs varied between 46 and 60 mJ/m due to significant variations in the polar/acid-base components of γ for all facets. Surface polarity as determined by γ measurements and XPS data were in good agreement, linking the variations in wettability to the concentration of oxygen containing surface functional groups. In conclusion, the wettability and the surface energy of a crystalline organic solid, such as aspirin, was found to be anisotropic and facet dependant, and in this case, related to the presence of surface carboxylic functionalities. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
Advancing (θA) and receding (θR) contact angles were measured with several probe liquids on the external facets (201), (001), (011), and (110) of macroscopic form I paracetamol crystals as well as the cleaved (internal) facet (010). For the external crystal facets, dispersive surface energies γd calculated from the contact angles were found to be similar (34 ± 1 mJ/m2), while the polar components varied significantly. Cleaving the crystals exposed a more apolar (010) surface with very different surface properties, including γd = 45 ± 1 mJ/m2. The relative surface polarity (γp/γ) of the facets in decreasing order was (001) > (011) > (201) > (110) > (010), which agreed with the fraction of exposed polar hydroxyl groups as determined from C and O 1s X-ray photoelectron spectroscopy (XPS) spectra, and could be correlated with the number of non-hydrogen-bonded hydroxyl groups per unit area present for each crystal facet, based on the known crystal structures. In conclusion, all facets of form I paracetamol crystals examined exhibited anisotropic wetting behavior and surface energetics that correlated to the presence of surface hydroxyl groups. © 2006 American Chemical Society.
Resumo:
The purpose of this investigation was to interpret the bitumen-aggregate adhesion based on the dielectric spectroscopic response of individual material components utilizing their dielectric constants, refractive indices and average tangent of the dielectric loss angle (average loss tangent). Dielectric spectroscopy of bitumen binders at room temperature was performed in the frequency range of 0.01–1000 Hz. Dielectric spectroscopy is an experimental method for characterizing the dielectric permittivity of a material as a function of frequency. Adhesion data has been determined using the Rolling bottle method. The results show that the magnitude of the average tangent of the dielectric loss angle (average loss tangent) depends on bitumen type. The average loss tangent in the frequency range 0.01–1 Hz is introduced as a potential indicator for predicting polarizability and, thereby, adhesion potential of bitumen binders to quartz aggregates when using Portland cement. In order to obtain acceptable adhesion of 70/100 penetration grade bitumen binders and quartz aggregates when using Portland cement, it is suggested that the binder have an average tan δ > 0.035 in the frequency range 0.01–1 Hz.
Resumo:
Illustrative extracts from the writings of Paul P. Ewald and of Max von Laue are presented. The latter in turn contains extensive text contributions from William Lawrence Bragg. These selections we have chosen so as to indicate the nature of the discovery of X-ray diffraction from crystals (experiments undertaken by Friedrich, Knipping and von Laue) and its early and prompt application in crystal structure analyses (by William Henry Bragg and William Lawrence Bragg). The platform for these discoveries was provided by a macroscopic physics problem dealt with by Ewald in his doctoral thesis with Arnold Sommerfeld in the Munich Physics Department, which is also where von Laue was based. W.L. Bragg was a student in Cambridge who used Trinity College Cambridge as his address on his early papers; experimental work was done by him in the Cavendish Laboratory, Cambridge, and also with his father, W.H. Bragg, in the Leeds University Physics Department. Of further historical interest is the award of an Honorary DSc (Doctor of Science) degree in 1936 to Max von Laue by the University of Manchester, UK, while William Lawrence Bragg was Langworthy Professor of Physics there. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
We present a formalism able to predict the transformation of light beams passing through biaxial crystals. We use this formalism to show both theoretically and experimentally the transition from double refraction to conical refraction, which is found when light propagates along one of the optic axes of a biaxial crystal. Additionally, we demonstrate that the theory is applicable both to non-cylindrically symmetric and non-homogeneously polarized beams by predicting the transformation of input beams passing through a cascade of biaxial crystals.
Resumo:
Based on dynamic renormalization group techniques, this letter analyzes the effects of external stochastic perturbations on the dynamical properties of cholesteric liquid crystals, studied in presence of a random magnetic field. Our analysis quantifies the nature of the temperature dependence of the dynamics; the results also highlight a hitherto unexplored regime in cholesteric liquid crystal dynamics. We show that stochastic fluctuations drive the system to a second-ordered Kosterlitz-Thouless phase transition point, eventually leading to a Kardar-Parisi-Zhang (KPZ) universality class. The results go beyond quasi-first order mean-field theories, and provides the first theoretical understanding of a KPZ phase in distorted nematic liquid crystal dynamics.
Resumo:
Clusters of temporal optical solitons—stable self-localized light pulses preserving their form during propagation—exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal crystals that mathematically correspond to non-Hermitian lattices and examine the types of collective mode instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid state physics to information theory promises a new outlook on information storage and transmission.