20 resultados para Quantile Distributions
Resumo:
Deposition of ß-amyloid (Aß ), a 'signature' pathological lesion of Alzheimer's disease (AD), is also characteristic of Down's syndrome (DS), and has been observed in dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). To determine whether the growth of Aß deposits was similar in these disorders, the size frequency distributions of the diffuse ('pre-amyloid'), primitive ('neuritic'), and classic ('dense-cored') A ß deposits were compared in AD, DS, DLB, and CBD. All size distributions had essentially the same shape, i.e., they were unimodal and positively skewed. Mean size of Aß deposits, however, varied between disorders. Mean diameters of the diffuse, primitive, and classic deposits were greatest in DS, DS and CBD, and DS, respectively, while the smallest deposits, on average, were recorded in DLB. Although the shape of the frequency distributions was approximately log-normal, the model underestimated the frequency of smaller deposits and overestimated the frequency of larger deposits in all disorders. A 'power-law' model fitted the size distributions of the primitive deposits in AD, DS, and DLB, and the diffuse deposits in AD. The data suggest: (1) similarities in size distributions of Aß deposits among disorders, (2) growth of deposits varies with subtype and disorder, (3) different factors are involved in the growth of the diffuse/primitive and classic deposits, and (4) log-normal and power-law models do not completely account for the size frequency distributions.
Resumo:
Sentiment analysis has long focused on binary classification of text as either positive or negative. There has been few work on mapping sentiments or emotions into multiple dimensions. This paper studies a Bayesian modeling approach to multi-class sentiment classification and multidimensional sentiment distributions prediction. It proposes effective mechanisms to incorporate supervised information such as labeled feature constraints and document-level sentiment distributions derived from the training data into model learning. We have evaluated our approach on the datasets collected from the confession section of the Experience Project website where people share their life experiences and personal stories. Our results show that using the latent representation of the training documents derived from our approach as features to build a maximum entropy classifier outperforms other approaches on multi-class sentiment classification. In the more difficult task of multi-dimensional sentiment distributions prediction, our approach gives superior performance compared to a few competitive baselines. © 2012 ACM.
Resumo:
Background: Parkinson’s disease (PD) is an incurable neurological disease with approximately 0.3% prevalence. The hallmark symptom is gradual movement deterioration. Current scientific consensus about disease progression holds that symptoms will worsen smoothly over time unless treated. Accurate information about symptom dynamics is of critical importance to patients, caregivers, and the scientific community for the design of new treatments, clinical decision making, and individual disease management. Long-term studies characterize the typical time course of the disease as an early linear progression gradually reaching a plateau in later stages. However, symptom dynamics over durations of days to weeks remains unquantified. Currently, there is a scarcity of objective clinical information about symptom dynamics at intervals shorter than 3 months stretching over several years, but Internet-based patient self-report platforms may change this. Objective: To assess the clinical value of online self-reported PD symptom data recorded by users of the health-focused Internet social research platform PatientsLikeMe (PLM), in which patients quantify their symptoms on a regular basis on a subset of the Unified Parkinson’s Disease Ratings Scale (UPDRS). By analyzing this data, we aim for a scientific window on the nature of symptom dynamics for assessment intervals shorter than 3 months over durations of several years. Methods: Online self-reported data was validated against the gold standard Parkinson’s Disease Data and Organizing Center (PD-DOC) database, containing clinical symptom data at intervals greater than 3 months. The data were compared visually using quantile-quantile plots, and numerically using the Kolmogorov-Smirnov test. By using a simple piecewise linear trend estimation algorithm, the PLM data was smoothed to separate random fluctuations from continuous symptom dynamics. Subtracting the trends from the original data revealed random fluctuations in symptom severity. The average magnitude of fluctuations versus time since diagnosis was modeled by using a gamma generalized linear model. Results: Distributions of ages at diagnosis and UPDRS in the PLM and PD-DOC databases were broadly consistent. The PLM patients were systematically younger than the PD-DOC patients and showed increased symptom severity in the PD off state. The average fluctuation in symptoms (UPDRS Parts I and II) was 2.6 points at the time of diagnosis, rising to 5.9 points 16 years after diagnosis. This fluctuation exceeds the estimated minimal and moderate clinically important differences, respectively. Not all patients conformed to the current clinical picture of gradual, smooth changes: many patients had regimes where symptom severity varied in an unpredictable manner, or underwent large rapid changes in an otherwise more stable progression. Conclusions: This information about short-term PD symptom dynamics contributes new scientific understanding about the disease progression, currently very costly to obtain without self-administered Internet-based reporting. This understanding should have implications for the optimization of clinical trials into new treatments and for the choice of treatment decision timescales.
Resumo:
Direct quantile regression involves estimating a given quantile of a response variable as a function of input variables. We present a new framework for direct quantile regression where a Gaussian process model is learned, minimising the expected tilted loss function. The integration required in learning is not analytically tractable so to speed up the learning we employ the Expectation Propagation algorithm. We describe how this work relates to other quantile regression methods and apply the method on both synthetic and real data sets. The method is shown to be competitive with state of the art methods whilst allowing for the leverage of the full Gaussian process probabilistic framework.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT