20 resultados para Pumping (laser)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, quantum-dot (QD) semiconductor lasers attract significant interest in many practical applications due to their advantages such as high-power pulse generation because to the high gain efficiency. In this work, the pulse shape of an electrically pumped QD-laser under high current is analyzed. We find that the slow rise time of the pulsed pump may significantly affect the high intensity output pulse. It results in sharp power dropouts and deformation of the pulse profile. We address the effect to dynamical change of the phase-amplitude coupling in the proximity of the excited state (ES) threshold. Under 30ns pulse pumping, the output pulse shape strongly depends on pumping amplitude. At lower currents, which correspond to lasing in the ground state (GS), the pulse shape mimics that of the pump pulse. However, at higher currents the pulse shape becomes progressively unstable. The instability is greatest when in proximity to the secondary threshold which corresponds to the beginning of the ES lasing. After the slow rise stage, the output power sharply drops out. It is followed by a long-time power-off stage and large-scale amplitude fluctuations. We explain these observations by the dynamical change of the alpha-factor in the QD-laser and reveal the role of the slowly rising pumping processes in the pulse shaping and power dropouts at higher currents. The modeling is in very good agreement with the experimental observations. © 2014 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full text: Semiconductor quantum dot lasers are attractive for multipletechnological applications in biophotonics. Simultaneous two-state lasing ofground state (GS) and excited state (ES) electrons and holes in QD lasers ispossible under a certain parameter range. It has already been investigated in steady-stateoperations and in dynamical regimes and is currently a subject of the intesiveresearch. It has been shown that the relaxation frequency in the two-state lasingregime is not a function of the total intensity [1], as could be traditionallyexpected.In this work we study damping relaxation oscillations in QD lasersimultaneously operating at two transitions, and find that under variouspumping conditions, the frequency of oscillations may decrease, increase orstay without change in time as shown in Fig1.The studied QD laser structure wasgrown on a GaAs substrate by molecular-beam epitaxy. The active region includedfive layers of self-assembled InAs QDs separated with a GaAs spacer from a5.3nm thick covering layer of InGaAs and processed into 4mm-wide mesa stripe devices. The 2.5mm long lasers withhigh-and antireflection coatings on the rear and front facets lasesimultaneously at the GS (around 1265nm) and ES (around 1190nm) in the wholerange of pumping. Pulsed electrical pumping obtained from a high power (up to2A current) pulse source was used to achieve high output power operation. We simultaneously detect the total output and merely ES output using aBragg filter transmitting the short-wavelength and reflecting the long-wavelengthradiation. Typical QD does not demonstrate relaxation oscillations frequencybecause of the strong damping [2]. It is confirmed for the low (I<0.68A) andhigh (I>1.2 A) range of the pump currents in our experiments. The situationis different for a short range of the medium currents (0.68Alaser turns on andstarts to operate simultaneously. The frequency of oscillations may either significantlydecrease (from 2 GHz to 1 GHz) or sufficiently increase (from 2 GHz to 4 GHz)within 20 ns of the pulse duration. The oscilations appear simultaneously at GSand ES and are always damped, but can be either inphase or antiphase dependingon the pump current and temperature conditions. We address the excitation of the relaxation oscillations to non-instantaneousturn on of the pumping source which activates with 5ns rise time and discussthe swap of the oscillation's frequency in time to spectral shifts caused by thermaleffects. [1] M.Abusaa, J. Danckaert, E. A. Viktorov, and T. Erneux, Phys. Rev. A 87, 063827(2013). [2] T.Erneux, E. A. Viktorov, and P. Mandel, Phys. Rev. A 76,023819 (2007). 1 © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present, for the first time, a detailed investigation of the impact of second order co-propagating Raman pumping on long-haul 100G WDM DP-QPSK coherent transmission of up to 7082 km using Raman fibre laser based configurations. Signal power and noise distributions along the fibre for each pumping scheme were characterised both numerically and experimentally. Based on these pumping schemes, the Q factor penalties versus co-pump power ratios were experimentally measured and quantified. A significant Q factor penalty of up to 4.15 dB was observed after 1666 km using symmetric bidirectional pumping, compared with counter-pumping only. Our results show that whilst using co-pumping minimises the intra-cavity signal power variation and amplification noise, the Q factor penalty with co-pumping was too great for any advantage to be seen. The relative intensity noise (RIN) characteristics of the induced fibre laser and the output signal, and the intra-cavity RF spectra of the fibre laser are also presented. We attribute the Q factor degradation to RIN induced penalty due to RIN being transferred from the first order fibre laser and second order co-pump to the signal. More importantly, there were two different fibre lasing regimes contributing to the amplification. It was random distributed feedback lasing when using counter-pumping only and conventional Fabry-Perot cavity lasing when using all bidirectional pumping schemes. This also results in significantly different performances due to different laser cavity lengths for these two classes of laser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally investigate three Raman fibre laser based amplification techniques with second-order bidirectional pumping. Relatively intensity noise (RIN) being transferred to the signal can be significantly suppressed by reducing first-order reflection near the input end. © 2015 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis presents a detailed study of different Raman fibre laser (RFL) based amplification techniques and their applications in long-haul/unrepeatered coherent transmission systems. RFL based amplifications techniques were characterised from different aspects, including signal/noise power distributions, relative intensity noise (RIN), mode structures of induced Raman fibre lasers, and so on. It was found for the first time that RFL based amplification techniques could be divided into three categories in terms of the fibre laser regime, which were Fabry-Perot fibre laser with two FBGs, weak Fabry-Perot fibre laser with one FBG and very low reflection near the input, and random distributed feedback (DFB) fibre laser with one FBG. It was also found that lowering the reflection near the input could mitigate the RIN of the signal significantly, thanks to the reduced efficiency of the Stokes shift from the FW-propagated pump. In order to evaluate the transmission performance, different RFL based amplifiers were evaluated and optimised in long-haul coherent transmission systems. The results showed that Fabry-Perot fibre laser based amplifier with two FBGs gave >4.15 dB Q factor penalty using symmetrical bidirectional pumping, as the RIN of the signal was increased significantly. However, random distributed feedback fibre laser based amplifier with one FBG could mitigate the RIN of the signal, which enabled the use of bidirectional second order pumping and consequently give the best transmission performance up to 7915 km. Furthermore, using random DFB fibre laser based amplifier was proved to be effective to combat the nonlinear impairment, and the maximum reach was enhanced by >28% in mid-link single/dual band optical phase conjugator (OPC) transmission systems. In addition, unrepeatered transmission over >350 km fibre length using RFL based amplification technique were presented experimentally using DP-QPSK and DP-16QAM transmitter.