26 resultados para Protein Inhibitors of Activated STAT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbon is generated from various waste biomass sources like rice straw, wheat straw, wheat straw pellets, olive stones, pistachios shells, walnut shells, beech wood and hardcoal. After drying the biomass is pyrolysed in the temperature range of 500-600 °C at low heating rates of 10 K/min. The activation of the chars is performed as steam activation at temperatures between 800 °C and 900 °C. Both the pyrolysis and activation experiments were run in lab-scale facilities. It is shown that nut shells provide high active surfaces of 1000-1300 m/g whereas the active surface of straw matters does hardly exceed 800 m/g which might be a result of the high ash content of the straws and the slightly higher carbon content of the nut shells. The active surface is detected by BET method. Besides the testing of a many types of biomass for the suitability as base material in the activated carbon production process, the experiments allow for the determination of production parameters like heating rate and pyrolysis temperature, activation time and temperature as well as steam flux which are necessary for the scale up of the process chain. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study focuses on the synthesis of amphiphilic block copolymers containing poly(glycerol monomethacrylate) (PGMMA), showing the advantages of a protection/deprotection strategy based on silyl groups. PGMMA blocks were synthesized via ATRP started by a double functional poly(dimethyl siloxane) (PDMS) macroinitiator of molecular weight ≈7000 g mol-1. The resulting triblock copolymers were characterized by low polydispersity (generally ≤1.1) and their aggregation concentration in water was essentially dominated by the PDMS block length (critical aggregation concentration substantially invariant for GMMA degree of polymerization ≥30). For GMMA blocks with DP > 50, the self-assembly in water produced 35-50 nm spherical micelles, while shorter hydrophilic chains produced larger aggregates apparently displaying worm-like morphologies. Block copolymers with long GMMA chains (DP ≈ 200) produced particularly stable micellar aggregates, which were then selected for a preliminary assessment of the possibility of adsorption of plasma proteins (albumin and fibrinogen); using diffusion NMR as an analytical technique, no significant adsorption was recorded both on micelles and on soluble PGMMA employed as a control, indicating the possibility of a "stealth" behaviour. This journal is © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visfatin is an adipogenic adipokine with increased levels in obesity, properties common to leptin. Thus, leptin may modulate visfatin production in adipose tissue (AT). Therefore, we investigated the effects of leptin on visfatin levels in 3T3-L1 adipocytes and human/murine AT, with or without a leptin antagonist. The potential signaling pathways and mechanisms regulating visfatin production in AT was also studied. Real-time RT-PCR and Western blotting were used to assess the relative mRNA and protein expression of visfatin. ELISA was performed to measure visfatin levels in conditioned media of AT explants, and small interfering RNA technology was used to reduce leptin receptor expression. Leptin significantly (P<0.01) increased visfatin levels in human and murine AT with a maximal response at leptin 10(-9) M, returning to baseline at leptin 10(-7) M. Importantly, ip leptin administration to C57BL/6 ob/ob mice further supported leptin-induced visfatin protein production in omental AT (P<0.05). Additionally, soluble leptin receptor levels rose with concentration dependency to a maximal response at leptin 10(-7) M (P<0.01). The use of a leptin antagonist negated the induction of visfatin and soluble leptin receptor by leptin. Furthermore, leptin-induced visfatin production was significantly decreased in the presence of MAPK and phosphatidylinositol 3-kinase inhibitors. Also, when the leptin eceptor gene was knocked down using small interfering RNA, eptin-induced visfatin expression was significantly decreased. Thus, leptin increases visfatin production in AT in vivo and ex vivo via pathways involving MAPK and phosphatidylinositol 3-kinase signaling. The pleiotropic effects of leptin may be partially mediated by visfatin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of dsRNA-activated protein kinase (PKR), not only attenuates muscle atrophy in a murine model of cancer cachexia (MAC16), but it also inhibits tumour growth. In vitro the PKR inhibitor maximally inhibited growth of MAC16 tumour cells at a concentration of 200 nM, which was also maximally effective in attenuating phosphorylation of PKR and of eukaryotic initiation factor (eIF)2 on the a-subunit. There was no effect on the growth of the MAC13 tumour, which does not induce cachexia, even at concentrations up to 1,000 nM. There was constitutive phosphorylation of PKR and eIF2a in the MAC16, but not in the MAC13 tumour, while levels of total PKR and eIF2a were similar. There was constitutive upregulation of nuclear factor-?B (NF-?B) in the MAC16 tumour only, and this was attenuated by the PKR inhibitor, suggesting that it arose from activation of PKR. In MAC16 alone the PKR inhibitor also attenuated expression of the 20S proteasome. The PKR inhibitor potentiated the cytotoxicity of both 5-fluorouracil and gemcitabine to MAC16 cells in vitro. These results suggest that inhibitors of PKR may be useful therapeutic agents against tumours showing increased expression of PKR and constitutive activation of NF-?B, and may also prove useful in sensitising tumours to standard chemotherapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. During osmotic swelling, cultured osteoblastic cells (ROS 17/2.8) exhibited activation of large amplitude Cl- currents in the whole-cell configuration of the patch-clamp technique. Effects of hypotonic shock on cell volume and membrane conductance were rapidly reversed on return to isotonic conditions. 2. Voltage command pulses in the range -80 to +50 mV produce instantaneous activation of Cl- currents. At potentials more positive than +50 mV the current exhibited time-dependent inactivation. The instantaneous current-voltage relationship was outwardly rectifying. 3. The anion permeability sequence of the induced current was SCN- (2.2) > I- (1.9) > Br- (1.5) > Cl- (1.0) > F- (0.8) > gluconate- (0.2). This corresponds to Eisenman's sequence I. 4. The volume-sensitive Cl- current was effectively inhibited by the Cl- channel blockers 4,4'-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). Outward currents were more effectively suppressed by DIDS than inward currents. The concentrations for 50% inhibition (IC50) of outward and inward currents were 81 and 298 μM, respectively. NPPB was equally effective at inhibiting outward and inward currents (IC50 of 64 μM). The current was relatively insensitive to diphenylamine-2-carboxylate (DPC), 500 μM producing only 22.5 ± 4.0% inhibition. 5. Inhibitors of protein kinase A (H-89, 1 μM) and tyrosine kinase (tyrphostin A25, 200 μM) were without effect upon activation of Cl- currents in response to hypotonic shock. Under isotonic conditions, elevation of intracellular Ca2+ by ionomycin (1 μM) or activation of protein kinase C by 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.1 μM) failed to evoke increases in basal Cl- conductance levels. 6. It is concluded that an outwardly rectifying Cl- conductance is activated upon osmotic swelling and may be involved in cell volume regulation of ROS 17/2.8 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The leucine metabolite β-hydroxy-β-methylbutyrate (HMB) prevents muscle protein degradation in cancer-induced weight loss through attenuation of the ubiquitin-proteasome proteolytic pathway. To investigate the mechanism of this effect, the action of HMB on protein breakdown and intracellular signaling leading to increased proteasome expression by the tumor factor proteolysis-inducing factor (PIF) has been studied in vitro using murine myotubes as a surrogate model of skeletal muscle. A comparison has been made of the effects of HMB and those of eicosapentaenoic acid (EPA), a known inhibitor of PIF signaling. At a concentration of 50 μmol/L, EPA and HMB completely attenuated PIF-induced protein degradation and induction of the ubiquitin-proteasome proteolytic pathway, as determined by the "chymotrypsin-like" enzyme activity, as well as protein expression of 20S proteasome α- and β-subunits and subunit p42 of the 19S regulator. The primary event in PIF-induced protein degradation is thought to be release of arachidonic acid from membrane phospholipids, and this process was attenuated by EPA, but not HMB, suggesting that HMB might act at another step in the PIF signaling pathway. EPA and HMB at a concentration of 50 μmol/L attenuated PIF-induced activation of protein kinase C and the subsequent degradation of inhibitor κBα and nuclear accumulation of nuclear factor κB. EPA and HMB also attenuated phosphorylation of p42/44 mitogen-activated protein kinase by PIF, thought to be important in PIF-induced proteasome expression. These results suggest that HMB attenuates PIF-induced activation and increased gene expression of the ubiquitin-proteasome proteolytic pathway, reducing protein degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated levels of the calcium-binding protein S100A4 promote metastasis and in carcinoma cells are associated with reduced survival of cancer patients. S100A4 interacts with target proteins that affect a number of activities associated with metastatic cells. However, it is not known how many of these interactions are required for S100A4-promoted metastasis, thus hampering the design of specific inhibitors of S100A4-induced metastasis. Intracellular S100A4 exists as a homodimer through previously identified, well conserved, predominantly hydrophobic key contacts between the subunits. Here it is shown that mutating just one key residue, phenylalanine 72, to alanine is sufficient to reduce the metastasis-promoting activity of S100A4 to 50% that of the wild type protein, and just 2 or 3 specific mutations reduces the metastasis-promoting activity of S100A4 to less than 20% that of the wild type protein. These mutations inhibit the self-association of S100A4 in vivo and reduce markedly the affinity of S100A4 for at least two of its protein targets, a recombinant fragment of non-muscle myosin heavy chain isoform A, and p53. Inhibition of the self-association of S100 proteins might be a novel means of inhibiting their metastasis-promoting activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antioxidants butylated hydroxytoluene (BHT, 1 mM) and d-α-tocopherol (10 μM) completely attenuated protein degradation in murine myotubes in response to both proteolysis-inducing factor (PIF) and angiotensin II (Ang II), suggesting that the formation of reactive oxygen species (ROS) plays an important role in this process. Both PIF and Ang II induced a rapid and transient increase in ROS formation in myotubes, which followed a parabolic dose-response curve, similar to that for total protein degradation. Antioxidant treatment attenuated the increase in expression and activity of the ubiquitin-proteasome proteolytic pathway by PIF and Ang II, by preventing the activation of the transcription factor nuclear factor-κB (NF-κB), through inhibition of phosphorylation of the NF-κB inhibitor protein (I-κB) and its subsequent degradation. ROS formation by both PIF and Ang II was attenuated by diphenyleneiodonium (10 μM), suggesting that it was mediated through the NADPH oxidase system. ROS formation was also attenuated by trifluoroacetyl arachidonic acid (10 μM), a specific inhibitor of cytosolic phospholipase A2, U-73122 (5 μM) and D609 (200 μM), inhibitors of phospholipase C and calphostin C (300 nM), a highly specific inhibitor of protein kinase C (PKC), all known activators of NADPH oxidase. Myotubes containing a dominant-negative mutant of PKC did not show an increase in ROS formation in response to either PIF or Ang II. The two Rac1 inhibitors W56 (200 μM) and NSC23766 (10 μM) also attenuated both ROS formation and protein degradation induced by both PIF and Ang II. Rac1 is known to mediate signalling between the phosphatidylinositol-3 kinase (PI-3K) product and NADPH oxidase, and treatment with LY24002 (10 μM), a highly selective inhibitor of PI-3K, completely attenuated ROS production in response to both PIF and Ang II, and inhibited total protein degradation, while the inactive analogue LY303511 (100 μM) had no effect. ROS formation appears to be important in muscle atrophy in cancer cachexia, since treatment of weight losing mice bearing the MAC16 tumour with d-α-tocopherol (1 mg kg- 1) attenuated protein degradation and increased protein synthesis in skeletal muscle. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potent-selective peptidomimetic inhibitors of tissue transglutaminase (TG2) were developed through a combination of protein-ligand docking and molecular dynamic techniques. Derivatives of these inhibitors were made with the aim of specific TG2 targeting to the intra- and extracellular space. A cell-permeable fluorescently labeled derivative enabled detection of in situ cellular TG2 activity in human umbilical cord endothelial cells and TG2-transduced NIH3T3 cells, which could be enhanced by treatment of cells with ionomycin. Reaction of TG2 with this fluorescent inhibitor in NIH3T3 cells resulted in loss of binding of TG2 to cell surface syndecan-4 and inhibition of translocation of the enzyme into the extracellular matrix, with a parallel reduction in fibronectin deposition. In human umbilical cord endothelial cells, this same fluorescent inhibitor also demonstrated a reduction in fibronectin deposition, cell motility, and cord formation in Matrigel. Use of the same inhibitor in a mouse model of hypertensive nephrosclerosis showed over a 40% reduction in collagen deposition.