24 resultados para Prostatic lesions in adulthood
Resumo:
The topographic pattern of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in silver stained coronal sections of neocortex and hippocampus in ten cases of Alzheimer's disease (AD). Both lesions showed evidence of clustering in the tissue with many of the clusters being regularly spaced. The patterns of SP and NFT were compared 1) in the same cortical zone, 2) between upper and lower zones of the cortex and 3) in regions connected by either association fibres or the perforant path. Correlations between the lesions in the same cortical zone were found in 20% of the layers examined while correlations between upper and lower zones occurred in 64% of cortical regions examined. There was evidence that NFT in upper and lower cortex may be in register in some tissues. In addition, positive correlations were found between upper NFT and lower SP and negative correlations between upper SP and lower NFT in some tissues. Regular clustering of lesions was also observed in brain regions connected to one another suggesting that they develop on functinally related sets of neurons.
Resumo:
A survey of 106 cases of Alzheimer's disease (AD) indicated that senile plaques (SP) and neurofibrillary tangles (NFT) were recorded as frequent or abundant in the visual cortex in 72% and 27% of cases respectively. Comparable estimates for other brain regions were 89% for both lesions in temporal cortex and 94% and 95% respectively in the hippocampus. In 18 cases studied in detail, the density of SP and NFT was greater in B19/18 than in B17 in cases with early onset and short duration. The density of SP and NFT in B17, B18/19 and parietal cortex was negatively correlated with age at death of the patient but not with duration of the disease. In about 50% of tissue sections examined SP and NFT were clustered at a particular depth in the cortex. Clustering was more frequent in the upper layers of the cortex and in early onset cases. It was concluded that visual stimuli that evoke activity in different areas of visual cortex might be developed as a diagnostic test for early onset AD.
Resumo:
The temporal lobe is a major site of pathology in a number of neurodegenerative diseases. In this chapter, the densities of the characteristic pathological lesions in various regions of the temporal lobe were compared in eight neurodegenerative disorders, viz., Alzheimer’s disease (AD), Down’s syndrome (DS), dementia with Lewy bodies (DLB), Pick’s disease (PiD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), sporadic Creutzfeldt-Jakob disease (sCJD), and neuronal intermediate filament inclusion disease (NIFID). Temporal lobe pathology was observed in all of these disorders most notably in AD, DS, PiD, sCJD, and NIFID. The regions of the temporal lobe affected by the pathology, however, varied between disorders. In AD and DS, the greatest densities of ?-amyloid (A?) deposits were recorded in cortical regions adjacent to the hippocampus (HC), DS exhibiting greater densities of A? deposits than AD. Similarly, in sCJD, greatest densities of prion protein (PrPsc) deposits were recorded in cortical areas of the temporal lobe. In AD and PiD, significant densities of neurofibrillary tangles (NFT) and Pick bodies (PB) respectively were present in sector CA1 of the HC while in CBD, the greatest densities of tau-immunoreactive neuronal cytoplasmic inclusions (NCI) were present in the parahippocampal gyrus (PHG). Particularly high densities of PB were present in the DG in PiD, whereas NFT in AD and Lewy bodies (LB) in DLB were usually absent in this region. These data confirm that the temporal lobe is an important site of pathology in the disorders studied regardless of their molecular ‘signature’. However, disorders differ in the extent to which the pathology spreads to affect the HC which may account for some of the observed differences in clinical dementia.
Resumo:
Purpose: Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Methods: Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). Results: PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P <0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P <0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P <0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. Conclusions: These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Human and animal studies suggest that obesity in adulthood may have its origins partly during prenatal development. One of the underlying causes of obesity is the perturbation of hypothalamic mechanisms controlling appetite. We determined mRNA levels of genes that regulate appetite, namely neuropeptide Y (NPY), pro-opiomelanocortin (POMC) and the leptin receptor isoform Ob-Rb, in the hypothalamus of adult mouse offspring from pregnant dams fed a protein-restricted diet, and examined whether mismatched post-weaning high-fat diet altered further expression of these gene transcripts. Pregnant MF1 mice were fed either normal protein (C, 18% casein) or protein-restricted (PR, 9% casein) diet throughout pregnancy. Weaned offspring were fed to adulthood a high-fat (HF; 45% kcal fat) or standard chow (21% kcal fat) diet to generate the C/HF, C/C, PR/HF and PR/C groups. Food intake and body weight were monitored during this period. Hypothalamic tissues were collected at 16 weeks of age for analysis of gene expression by real time RT-PCR. All HF-fed offspring were observed to be heavier vs. C groups regardless of the maternal diet during pregnancy. In the PR/HF males, but not in females, daily energy intake was reduced by 20% vs. the PR/C group (p <0.001). In PR/HF males, hypothalamic mRNA levels were lower vs. the PR/C group for NPY (p <0.001) and Ob-Rb (p <0.05). POMC levels were similar in all groups. In females, mRNA levels for these transcripts were similar in all groups. Our results suggest that adaptive changes during prenatal development in response to maternal dietary manipulation may have long-term sex-specific consequences on the regulation of appetite and metabolism following post-weaning exposure to an energy-rich nutritional environment. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.
Resumo:
Background— Fetal growth restriction (FGR) affects 5% to 10% of newborns and is associated with increased cardiovascular mortality in adulthood. The most commonly accepted hypothesis is that fetal metabolic programming leads secondarily to diseases associated with cardiovascular disease, such as obesity, diabetes mellitus, and hypertension. Our main objective was to evaluate the alternative hypothesis that FGR induces primary cardiac changes that persist into childhood. Methods and Results— Within a cohort of fetuses with growth restriction identified in fetal life and followed up into childhood, we randomly selected 80 subjects with FGR and compared them with 120 normally grown fetuses, matched for gender, birth date, and gestational age at birth. Cardiovascular assessment was performed in childhood (mean age of 5 years). Compared with control subjects, children with FGR had a different cardiac shape, with increased transversal diameters and more globular cardiac ventricles. Although left ejection fraction was similar among the study groups, stroke volume was reduced significantly, which was compensated for by an increased heart rate to maintain output in severe FGR. This was associated with subclinical longitudinal systolic dysfunction (decreased myocardial peak velocities) and diastolic changes (increased E/E' ratio and E deceleration time). Children with FGR also had higher blood pressure and increased intima-media thickness. For all parameters evaluated, there was a linear increase with the severity of growth restriction. Conclusions— These findings suggest that FGR induces primary cardiac and vascular changes that could explain the increased predisposition to cardiovascular disease in adult life. If these results are confirmed, the impact of strategies with beneficial effects on cardiac remodeling should be explored in children with FGR.
Resumo:
Introduction: The antihyperglycaemic agent metformin is widely used in the treatment of type 2 diabetes. Data from the UK Prospective Diabetes Study and retrospective analyses of large healthcare databases concur that metformin reduces the incidence of myocardial infarction and increases survival in these patients. This apparently vasoprotective effect appears to be independent of the blood glucose-lowering efficacy. Effects of metformin: Metformin has long been known to reduce the development of atherosclerotic lesions in animal models, and clinical studies have shown the drug to reduce surrogate measures such as carotid intima-media thickness. The anti-atherogenic effects of metformin include reductions in insulin resistance, hyperinsulinaemia and obesity. There may be modest favourable effects against dyslipidaemia, reductions in pro-inflammatory cytokines and monocyte adhesion molecules, and improved glycation status, benefiting endothelial function in the macro- and micro-vasculature. Additionally metformin exerts anti-thrombotic effects, contributing to overall reductions in athero-thrombotic risk in type 2 diabetic patients. © 2008 Springer Science+Business Media, LLC.
Resumo:
OBJECTIVES: To determine the carrier rate of the GJB2 mutation c.35delG and c.101T>C in a UK population study; to determine whether carriers of the mutation had worse hearing or otoacoustic emissions compared to non-carriers. DESIGN: Prospective cohort study. SETTING: University of Bristol, UK. PARTICIPANTS: Children in the Avon Longitudinal Study of Parents and Children. 9202 were successfully genotyped for the c.35delG mutation and c.101>T and classified as either carriers or non-carriers. OUTCOME MEASURES: Hearing thresholds at age 7, 9 and 11 years and otoacoustic emissions at age 9 and 11. RESULTS: The carrier frequency of the c.35delG mutation was 1.36% (95% CI 1.13 to 1.62) and c.101T>C was 2.69% (95% CI 2.37 to 3.05). Carriers of c.35delG and c.101T>C had worse hearing than non-carriers at the extra-high frequency of 16 kHz. The mean difference in hearing at age 7 for the c.35delG mutation was 8.53 dB (95% CI 2.99, 14.07) and 12.57 dB at age 9 (95% CI 8.10, 17.04). The mean difference for c.101T>C at age 7 was 3.25 dB (95% CI -0.25 to 6.75) and 7.61 dB (95% CI 4.26 to 10.96) at age 9. Otoacoustic emissions were smaller in the c.35delG mutation carrier group: at 4 kHz the mean difference was -4.95 dB (95% CI -6.70 to -3.21) at age 9 and -3.94 dB (95% CI -5.78 to -2.10) at age 11. There was weak evidence for differences in otoacoustic emissions amplitude for c.101T>C carriers. CONCLUSION: Carriers of the c.35delG mutation and c.101T>C have worse extra-high-frequency hearing than non-carriers. This may be a predictor for changes in lower-frequency hearing in adulthood. The milder effects observed in carriers of c.101T>C are in keeping with its classification as a mutation causing mild/moderate hearing loss in homozygosity or compound heterozygosity.