70 resultados para Process Models
Resumo:
High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm. Physical properties such as porosity, microstructure, surface roughness and adhesion strength of coatings produced by droplet deposition in a thermal spray process are determined to a large extent by the dynamics of deformation and solidification of the particles impinging on the substrate. Therefore, is one of the objectives of this study to present a complete numerical model of droplet impact and solidification. The modelling results show that solidification of droplets is significantly affected by the thermal contact resistance/substrate surface roughness.
Resumo:
Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.
Resumo:
We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques.
Resumo:
This paper consides the problem of extracting the relationships between two time series in a non-linear non-stationary environment with Hidden Markov Models (HMMs). We describe an algorithm which is capable of identifying associations between variables. The method is applied both to synthetic data and real data. We show that HMMs are capable of modelling the oil drilling process and that they outperform existing methods.
Resumo:
Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models to identify the lag (or delay) between different variables for such data. Adopting an information-theoretic approach, we develop a procedure for training HMMs to maximise the mutual information (MMI) between delayed time series. The method is used to model the oil drilling process. We show that cross-correlation gives no information and that the MMI approach outperforms maximum likelihood.
Resumo:
Based on a statistical mechanics approach, we develop a method for approximately computing average case learning curves and their sample fluctuations for Gaussian process regression models. We give examples for the Wiener process and show that universal relations (that are independent of the input distribution) between error measures can be derived.
Resumo:
A sieve plate distillation column has been constructed and interfaced to a minicomputer with the necessary instrumentation for dynamic, estimation and control studies with special bearing on low-cost and noise-free instrumentation. A dynamic simulation of the column with a binary liquid system has been compiled using deterministic models that include fluid dynamics via Brambilla's equation for tray liquid holdup calculations. The simulation predictions have been tested experimentally under steady-state and transient conditions. The simulator's predictions of the tray temperatures have shown reasonably close agreement with the measured values under steady-state conditions and in the face of a step change in the feed rate. A method of extending linear filtering theory to highly nonlinear systems with very nonlinear measurement functional relationships has been proposed and tested by simulation on binary distillation. The simulation results have proved that the proposed methodology can overcome the typical instability problems associated with the Kalman filters. Three extended Kalman filters have been formulated and tested by simulation. The filters have been used to refine a much simplified model sequentially and to estimate parameters such as the unmeasured feed composition using information from the column simulation. It is first assumed that corrupted tray composition measurements are made available to the filter and then corrupted tray temperature measurements are accessed instead. The simulation results have demonstrated the powerful capability of the Kalman filters to overcome the typical hardware problems associated with the operation of on-line analyzers in relation to distillation dynamics and control by, in effect, replacirig them. A method of implementing estimator-aided feedforward (EAFF) control schemes has been proposed and tested by simulation on binary distillation. The results have shown that the EAFF scheme provides much better control and energy conservation than the conventional feedback temperature control in the face of a sustained step change in the feed rate or multiple changes in the feed rate, composition and temperature. Further extensions of this work are recommended as regards simulation, estimation and EAFF control.
Resumo:
This thesis examines the empirical evidence for the transferability of Japanese soft technology (JST) or Japanese work organisation within two government-initiated, Malaysian-Japanese strategic alliances: PROTON and PERNEC. The government, through its Look East Policy (LEP) began in 1982, taking Japan (and South Korea) as models and partners in Malaysian economic and industrial development process, and expected these alliances to learn the good aspects of Japanese work organisations and management styles in order for them to become independent companies, both technologically and economically. The thesis found that the alliances have been successfully taking and utilising Japanese parts, components, tools, robots and machines; i.e. the 'ready-made hard technology'. [Whereas the important element of soft technology has been ignored]. The soft technology has been slowly and marginally transferred because neither local parties nor their Japanese counterparts within the alliances consider the acquisition or transfer of soft technology to be the main concern or a part of business plan. Although many factors influence management transfer, the thesis has focused on the eagerness and the capability of Malaysian managerial teams to acquire and, to a lesser extent, the readiness of the Japanese to transfer the technology. It was found that there is a lack of demand on technology acquisition by Malaysian managers and lack of responsibility to transfer the technology among Japanese experts. However, the political and social pressures on these alliances, the industrial climate and labour market, leaderships and management system of alliances, and Japanese MNCs regional and global corporate strategies have contributed to the high level of transfer of JST at PROTON compared to PERNEC. The research also found that Malaysian industrial and investment policies have favoured foreign investment but there is a lack of strategies for nurturing indigenous technological development.On the other hand the Japanese MNCs and public agencies have been operating in Malaysia and guided by their regional and global corporate strategies and less concerned with Malaysian technological development. In conclusion, empirically, the JST transfer is minimal. The transfer has been influenced by internal contingency factors of organisation; external industrial, political and cultural environmental factors; and last but not least the Japanese MNCs' global and regional corporate strategies. The transfer of Japanese management in this research is inclined towards core-periphery transfer model, it is also related to organisational and national technological capability.
Resumo:
This paper argues the use of reusable simulation templates as a tool that can help to predict the effect of e-business introduction on business processes. First, a set of requirements for e-business modelling is introduced and modelling options described. Traditional business process mapping techniques are examined as a way of identifying potential changes. Whilst paper-based process mapping may not highlight significant differences between traditional and e-business processes, simulation does allow the real effects of e-business to be identified. Simulation has the advantage of capturing the dynamic characteristics of the process, thus reflecting more accurately the changes in behaviour. This paper shows the value of using generic process maps as a starting point for collecting the data that is needed to build the simulation and proposes the use of reusable templates/components for the speedier building of e-business simulation models.
Resumo:
Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.
Resumo:
The application of systems thinking to designing, managing, and improving business processes has developed a new "holonic-based" process modeling methodology. The theoretical background and the methodology are described using examples taken from a large organization designing and manufacturing capital goods equipment operating within a complex and dynamic environment. A key point of differentiation attributed to this methodology is that it allows a set of models to be produced without taking a task breakdown approach but instead uses systems thinking and a construct known as the "holon" to build process descriptions as a system of systems (i.e., a holarchy). The process-oriented holonic modeling methodology has been used for total quality management and business process engineering exercises in different industrial sectors and builds models that connect the strategic vision of a company to its operational processes. Exercises have been conducted in response to environmental pressures to make operations align with strategic thinking as well as becoming increasingly agile and efficient. This unique methodology is best applied in environments of high complexity, low volume, and high variety, where repeated learning opportunities are few and far between (e.g., large development projects). © 2007 IEEE.
Resumo:
Expert systems, and artificial intelligence more generally, can provide a useful means for representing decision-making processes. By linking expert systems software to simulation software an effective means of including these decision-making processes in a simulation model can be achieved. This paper demonstrates how a commercial-off-the-shelf simulation package (Witness) can be linked to an expert systems package (XpertRule) through a Visual Basic interface. The methodology adopted could be used for models, and possibly software, other than those presented here.
Resumo:
Allocation procedures, have attracted considerable interest among higher education institutions in recent years. Relevant previous research indicates that several universities adopt different approaches to the resource allocation problem, employing models and procedures that reflect their organisational arrangements and their internal socio – political dynamics. We argue that while studying accounting processes in their organisational context, the role of trust should also be considered carefully. In particular, it is very important to consider the attitudes of the individuals involved and interacting within organisational processes, and especially the trust between them, which plays an important role to the overall good governance of these processes. In our study, the role of interpersonal trust in an old Scottish University resource allocation process is examined. The study indicates that trust is a very necessary insight to the facilitation of social structures of accountability that enhance a better governance of the resource allocation process.
Resumo:
The development of strategy remains a debate for academics and a concern for practitioners. Published research has focused on producing models for strategy development and on studying how strategy is developed in organisations. The Operational Research literature has highlighted the importance of considering complexity within strategic decision making; but little has been done to link strategy development with complexity theories, despite organisations and organisational environments becoming increasingly more complex. We review the dominant streams of strategy development and complexity theories. Our theoretical investigation results in the first conceptual framework which links an established Strategic Operational Research model, the Strategy Development Process model, with complexity via Complex Adaptive Systems theory. We present preliminary findings from the use of this conceptual framework applied to a longitudinal, in-depth case study, to demonstrate the advantages of using this integrated conceptual model. Our research shows that the conceptual model proposed provides rich data and allows for a more holistic examination of the strategy development process. © 2012 Operational Research Society Ltd. All rights reserved.
Resumo:
Purpose - The purpose of this study is to develop a performance measurement model for service operations using the analytic hierarchy process approach. Design/methodology/approach - The study reviews current relevant literature on performance measurement and develops a model for performance measurement. The model is then applied to the intensive care units (ICUs) of three different hospitals in developing nations. Six focus group discussions were undertaken, involving experts from the specific area under investigation, in order to develop an understandable performance measurement model that was both quantitative and hierarchical. Findings - A combination of outcome, structure and process-based factors were used as a foundation for the model. The analyses of the links between them were used to reveal the relative importance of each and their associated sub factors. It was considered to be an effective quantitative tool by the stakeholders. Research limitations/implications - This research only applies the model to ICUs in healthcare services. Practical implications - Performance measurement is an important area within the operations management field. Although numerous models are routinely being deployed both in practice and research, there is always room for improvement. The present study proposes a hierarchical quantitative approach, which considers both subjective and objective performance criteria. Originality/value - This paper develops a hierarchical quantitative model for service performance measurement. It considers success factors with respect to outcomes, structure and processes with the involvement of the concerned stakeholders based upon the analytic hierarchy process approach. The unique model is applied to the ICUs of hospitals in order to demonstrate its effectiveness. The unique application provides a comparative international study of service performance measurement in ICUs of hospitals in three different countries. © Emerald Group Publishing Limited.