25 resultados para Placenta.
Resumo:
Background—Alterations in circulating levels of pro- and antiangiogenic factors have been associated with adverse pregnancy outcomes. Heparin is routinely administered to pregnant women, but without clear knowledge of its impact on these factors. Methods and Results—We conducted a longitudinal study of 42 pregnant women. Twenty-one women received prophylactic heparin anticoagulation, and 21 healthy pregnant women served as controls. Compared with gestational age-matched controls, heparin treatment was associated with increased circulating levels of soluble fms-like tyrosine kinase-1 (sFlt-1) in the third trimester (P<0.05), in the absence of preeclampsia, placental abruption, or fetal growth restriction. Heparin had no effect on circulating levels of vascular endothelial growth factor, placenta growth factor, or soluble endoglin as assessed by ELISA. In vitro, low-molecular weight and unfractionated heparins stimulated sFlt-1 release from placental villous explants, in a dose- and time-dependent manner. This effect was not due to placental apoptosis, necrosis, alteration in protein secretion, or increased transcription. Western blot analysis demonstrated that heparin induced shedding of the N-terminus of Flt-1 both in vivo and in vitro as indicated by a predominant band of 100–112 kDa. By using an in vitro angiogenesis assay, we demonstrated that serum of heparin-treated cases inhibited both basal and vascular endothelial growth factor-induced capillary-like tube formation. Conclusions—Heparin likely increases the maternal sFlt-1 through shedding of the extracellular domain of Flt-1 receptor. Our results imply that upregulation of circulating sFlt-1 immunoreactivity in pregnancy is not always associated with adverse outcomes, and that heparin's protective effects, if any, cannot be explained by promotion of angiogenesis.
Resumo:
Despite intense investigation, mechanisms that facilitate the emergence of the pre-eclampsia phenotype in women are still unknown. Placental hypoxia, hypertension, proteinuria and oedema are the principal clinical features of this disease. It is speculated that hypoxia-driven disruption of the angiogenic balance involving vascular endothelial growth factor (VEGF)/placenta-derived growth factor (PLGF) and soluble Fms-like tyrosine kinase-1 (sFLT-1, the soluble form of VEGF receptor 1) might contribute to some of the maternal symptoms of pre-eclampsia. However, pre-eclampsia does not develop in all women with high sFLT-1 or low PLGF levels, and it also occurs in some women with low sFLT-1 and high PLGF levels. Moreover, recent experiments strongly suggest that several soluble factors affecting the vasculature are probably elevated because of placental hypoxia in the pre-eclamptic women, indicating that upstream molecular defect(s) may contribute to pre-eclampsia. Here we show that pregnant mice deficient in catechol-O-methyltransferase (COMT) show a pre-eclampsia-like phenotype resulting from an absence of 2-methoxyoestradiol (2-ME), a natural metabolite of oestradiol that is elevated during the third trimester of normal human pregnancy. 2-ME ameliorates all pre-eclampsia-like features without toxicity in the Comt(-/-) pregnant mice and suppresses placental hypoxia, hypoxia-inducible factor-1alpha expression and sFLT-1 elevation. The levels of COMT and 2-ME are significantly lower in women with severe pre-eclampsia. Our studies identify a genetic mouse model for pre-eclampsia and suggest that 2-ME may have utility as a plasma and urine diagnostic marker for this disease, and may also serve as a therapeutic supplement to prevent or treat this disorder.
Resumo:
Placental villous development requires the co-ordinated action of angiogenic factors on both endothelial and trophoblast cells. Like vascular endothelial growth factor (VEGF), VEGF-C increases vascular permeability, stimulates endothelial cell proliferation and migration. In the present study, we investigated the expression of VEGF-C and its receptors VEGFR-3 and VEGFR-2 in normal and intrauterine growth-restricted (IUGR) placenta. Immunolocalisation studies showed that like VEGF and VEGFR-1, VEGF-C, VEGFR-3 and VEGFR-2 co-localised to the syncytiotrophoblast, to cells in the maternal decidua, as well as to the endothelium of the large placental blood vessels. Western blot analysis demonstrated a significant decrease in placental VEGF-C and VEGFR-3 protein expression in severe IUGR as compared to gestationally-matched third trimester pregnancies. Conditioned medium from VEGF-C producing pancreatic carcinoma (Suit-2) and endometrial epithelial (Hec-1B) cell lines caused an increased association of the phosphorylated extracellular signal regulated kinase (ERK) in VEGFR-3 immunoprecipitates from spontaneously transformed first trimester trophoblast cells. VEGF121 caused dose-dependant phosphorylation of VEGFR-2 in trophoblast cells as well as stimulating DNA synthesis. In addition, premixing VEGF165 with heparin sulphate proteoglycan potentiated trophoblast proliferation and the association of phospho-ERK with the VEGFR-2 receptor. VEGF165-mediated DNA synthesis was inhibited by anti-VEGFR-2 neutralising antibody. The results demonstrate functional VEGFR-2 and VEGFR-3 receptors on trophoblast and suggest that the decreased expression of VEGF-C and VEGFR-3 may contribute to the abnormal villous development observed in IUGR placenta.
Resumo:
Pre-eclampsia is a vascular disorder of pregnancy where anti-angiogenic factors, systemic inflammation and oxidative stress predominate, but none can claim to cause pre-eclampsia. This review provides an alternative to the 'two-stage model' of pre-eclampsia in which abnormal spiral arteries modification leads to placental hypoxia, oxidative stress and aberrant maternal systemic inflammation. Very high maternal soluble fms-like tyrosine kinase-1 (sFlt-1 also known as sVEGFR) and very low placenta growth factor (PlGF) are unique to pre-eclampsia; however, abnormal spiral arteries and excessive inflammation are also prevalent in other placental disorders. Metaphorically speaking, pregnancy can be viewed as a car with an accelerator and brakes, where inflammation, oxidative stress and an imbalance in the angiogenic milieu act as the 'accelerator'. The 'braking system' includes the protective pathways of haem oxygenase 1 (also referred as Hmox1 or HO-1) and cystathionine-γ-lyase (also known as CSE or Cth), which generate carbon monoxide (CO) and hydrogen sulphide (H2S) respectively. The failure in these pathways (brakes) results in the pregnancy going out of control and the system crashing. Put simply, pre-eclampsia is an accelerator-brake defect disorder. CO and H2S hold great promise because of their unique ability to suppress the anti-angiogenic factors sFlt-1 and soluble endoglin as well as to promote PlGF and endothelial NOS activity. The key to finding a cure lies in the identification of cheap, safe and effective drugs that induce the braking system to keep the pregnancy vehicle on track past the finishing line.
Resumo:
The exact aetiology of preeclampsia is unknown, but there is a good association with an imbalance in angiogenic growth factors and abnormal placentation [1]. Hydrogen sulphide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is pro-angiogenic vasodilator [2] and [3]. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Plasma levels of H2S were significantly decreased in preeclamptic women (p < 0.01), which was associated with reduced CSE message and protein expression in human placenta as determined by real-time PCR and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine (PAG) in first trimester (8–12 weeks gestation) human placental explants had reduced placenta growth factor (PlGF) production as assessed by ELISA and inhibited trophoblast invasion in vitro. Endothelial CSE knockdown by siRNA transfection increased the endogenous release of soluble fms-Like tyrosine kinase-1 (sFlt-1) and soluble endoglin, (sEng) from human umbilical vein endothelial cells while adenoviral-mediated CSE overexpression inhibited their release. Administration of PAG to pregnant mice induced hypertension, liver damage, and promoted abnormal labyrinth vascularisation in the placenta and decreased fetal growth. Finally, a slow releasing, H2S-generating compound, GYY4137, inhibited circulating sFlt-1 and sEng levels and restored fetal growth that was compromised by PAG-treatment demonstrating that the effect of CSE inhibitor was due to inhibition of H2S production. These results imply that endogenous H2S is required for healthy placental vasculature and a decrease in of CSE/H2S activity may contribute to the pathogenesis of preeclampsia. References [1] S. Ahmad, A. Ahmed, Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia, Circ Res., 95 (2004), pp. 884–891. [2] G. Yang, et al., H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase, Science, 322 (2008), pp. 587–590. [3] A. Papapetropoulos, et al., Hydrogen sulfide is an endogenous stimulator of angiogenesis, Proc Natl Acad Sci USA, 106 (2009), pp. 21972–21977.
Resumo:
It is well established that hydrogen sulfide (H 2S) has a signaling role in the body. So far it has been shown that H 2S is produced by intra-uterine tissues in the pregnant rat and the human placenta. Two main enzymes responsible for H 2S production, cystathionine- synthase and cystathionine-lyase, have been demonstrated in the pregnant and nonpregnant uterus, fetal membranes and placenta in the rat, and in human placenta. H 2S donors have been shown to inhibit contraction of the pregnant rat uterus. H 2S could play a role in maintaining uterine quiescence during pregnancy, as an oxygen sensor and vasodilator in the placenta, or as an anti-inflammatory. More research is required in this area to elucidate the roles of H 2S in the female reproductive tract and its mechanisms of action. © 2010 Expert Reviews Ltd.
Resumo:
Life's perfect partnership starts with the placenta. If we get this right, we have the best chance of healthy life. In preeclampsia, we have a failing placenta. Preeclampsia kills one pregnant woman every minute and the life expectancy of those who survive is greatly reduced. Preeclampsia is treated roughly the same way it was when Thomas Edison was making the first silent movie. Globally, millions of women risk death to give birth each year and almost 300,000 lose their lives in this process. Over half a million babies around the world die each year as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial dysfunction is a central phenomenon responsible for the clinical signs of preeclampsia. In the late nineties, we discovered that vascular endothelial growth factor (VEGF) stimulated nitric oxide release. This led us to suggest that preeclampsia arises due to the loss of VEGF activity, possibly due to a rise in soluble Flt-1 (sFlt-1), the natural antagonist of VEGF. Researchers have shown that high sFlt-1 elicits preeclampsia-like signs in pregnant rats and sFlt-1 increases before the clinical signs of preeclampsia in pregnant women. We demonstrated that removing or reducing this culprit protein from preeclamptic placenta restored the angiogenic balance. Heme oxygenase-1 (HO-1 or Hmox1) that generates carbon monoxide (CO), biliverdin (rapidly converted to bilirubin) and iron is cytoprotective. We showed that the Hmox1/CO pathway prevents human placental injury caused by pro-inflammatory cytokines and suppresses sFlt-1 and soluble endoglin release, factors responsible for preeclampsia phenotypes. The other key enzyme we identified is the hydrogen sulfide generating cystathionine-gamma-lyase (CSE or Cth). These are the only two enzyme systems shown to suppress sFlt-1 and to act as protective pathways against preeclampsia phenotypes in animal models. We also showed that when hydrogen sulfide restores placental vasculature, it also improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, this triggers preeclampsia. Discovering that statins induce these enzymes led us to an RCT to develop a low-cost therapy (StAmP Trial) to prevent or treat preeclampsia. If you think of pregnancy as a car then preeclampsia is an accelerator–brake defect disorder. Inflammation, oxidative stress and an imbalance in the angiogenic milieu fuel the ‘accelerator’. It is the failure in the braking systems (the endogenous protective pathway) that results in the ‘accelerator’ going out of control until the system crashes, manifesting itself as preeclampsia.
Resumo:
Fetal growth restriction (FGR) is characterized by the birth weight and body mass below the tenth percentile for gestational age. FGR is a major cause of perinatal morbidity and mortality and babies born with FGR are prone to develop cardiovascular diseases later in life. The underlying pathology of FGR is inadequate placental transfer of nutrients from mother to fetus, which can be caused by placental insufficiency. Hydrogen sulfide (H2S), a gaseous messenger is produced endogenously by cystathionine-lyase (Cth), cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST), which are present in human placenta. Recently, we demonstrated that the dysregulation of H2S/Cth pathway is associated with preeclampsia and blockade of CSE activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in H2S pathways promote FGR and H2S donor restores fetal growth in mice where CBS or CSE activity has been compromised. Western blotting and qPCR revealed that placental CBS expressions were significantly reduced in women with FGR. ELISA analysis showed reduced placental growth factor production (PlGF) from first trimester (8–12 weeks gestation) human placental explants following inhibition of CBS activity by aminooxyacetic acid (AOA). Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction. This was associated with reduced PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor treated mice. These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia.
Resumo:
INTRODUCTION: Fetal growth restriction (FGR), which causes perinatal morbidity and mortality, is characterized by birth weight and body mass being below 10th percentile for gestational age. FGR babies are prone to develop cardiovascular diseases later in life. Inadequate placental transfer of nutrients from mother to fetus due to placental insufficiency is considered the underlying cause of FGR. Recently, we demonstrated that blockade of cystathionine-γ-lyase (CSE) activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in cystathionine-β-synthase (CBS) / H2S pathway may promote FGR. METHODS: Placental CBS expressions were determined in women with FGR (n=9) and normal controls (n=14) by Western blotting and real-time qPCR. ELISA was used to determine angiogenic factors levels in plasma and first-trimester (8–12 weeks gestation) human placental explants. Time pregnant mice were treated with CBS inhibitor, aminooxyacetic acid (AOA). Mean arterial blood pressure (MBP), histological assessments of placenta and embryos were performed. RESULTS: Placental CBS expressions were significantly reduced in women with FGR. Inhibition of CBS activity by AOA reduced PlGF production from first-trimester human placental explants, Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction, which was associated with reduced placental PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor-treated animals. Furthermore, H2S donor GYY4137 treatment restored fetal growth in pregnant mice exposed to high level of sFlt-1. CONCLUSIONS: These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia opening up the therapeutic potentials of H2S therapy in this condition.
Resumo:
INTRODUCTION: Preeclampsia is a vascular disorder in pregnancyand is biochemical characterization by high soluble Flt-1 and lowplacenta growth factor as well as an imbalance in redox homeostasis.During conditions of high oxidative stress, cysteine residues on keyproteins are reversibly altered by S-glutathionylation, modifying theirfunction. Glutaredoxin-1 (Glrx) enzymatically catalyzes the removal of S-glutathione adducts, conferring reversible signaling dynamics toproteins with redox-sensitive cysteines. The role of Glrx in preeclampsiais unknown.METHODS: Immunohistochemistry and Western blot analysis for Glrx orglutathione were conducted on human placenta samples collected pre-termfrom early onset preeclamptic patients (n=10) or non-preeclamptic induceddeliveries (n=9). Human endothelial cells were infected with adenovirusencoding Glrx or LacZ prior to the cells being exposed to hypoxia (0.1%O2, 24h) to measure changes in soluble Flt-1 (sFlt-1). Quantitative PCRand ELISA were used to measure sFlt-1 at mRNA and protein level.RESULTS: Immunohistochemical staining for GSH revealed lowerS-glutathionylation adducts in preeclampsia placenta in comparison tocontrols. Glrx expression, which catalyses de-glutathionylation wasenhanced in early onset preeclampsia compared to pre-term controlsamples. In contrast, no change was observed in preeclamptic and IUGRplacentas at full term. In endothelial cells overexpressing Glrx, sFlt-1expression was dramatically enhanced at mRNA (3-fold P<0.05) andprotein level (5 fold P>0.01, n=4) after hypoxia andoverexpressing Glrxin mice enhanced levels of circulating sFlt-1 during in vivo ischemia.CONCLUSIONS: Enhanced Glrx expression in preeclamptic placentain line with an apparent decrease in S-glutathionylation may leavekey proteins susceptible to irreversible oxidation in conditions of highoxidative stress.