19 resultados para Pilot-scale


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integration of renewable energy with desalination technologies has emerged as an attractive solution to augment fresh water supply sustainably. Fouling and scaling are still considered as limiting factors in membrane desalination processes. For brackish water treatment, pre-treatment of reverse osmosis (RO) feed water is a key step in designing RO plants avoiding membrane fouling. This study aims to compare at pilot scale the rejection efficiency of RO membranes with multiple pre-treatment options at different water recoveries (30, 35, 40, 45 and 50%) and TDS concentrations (3500, 4000, and 4500mg/L). Synthetic brackish water was prepared and performance evaluation were carried out using brackish water reverse osmosis (BWRO) membranes (Filmtec LC-LE-4040 and Hydranautics CPA5-LD-4040) preceded by 5 and 1μm cartridge filters, 0.02μm ultra-filtration (UF) membrane, and forward osmosis (FO) membrane using 0.25M NaCl and MgCl2 as draw solutions (DS). It was revealed that FO membrane with 0.25M MgCl2 used as a draw solution (DS) and Ultra-filtration (UF) membrane followed by Filmtec membrane gave overall 98% rejection but UF facing high fouling potential due to high applied pressure. Use of 5 and 1μm cartridge filter prior to Filmtec membrane also showed effective results with 95% salt rejection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Remote, non-invasive and objective tests that can be used to support expert diagnosis for Parkinson's disease (PD) are lacking. Methods: Participants underwent baseline in-clinic assessments, including the Unified Parkinson's Disease Rating Scale (UPDRS), and were provided smartphones with an Android operating system that contained a smartphone application that assessed voice, posture, gait, finger tapping, and response time. Participants then took the smart phones home to perform the five tasks four times a day for a month. Once a week participants had a remote (telemedicine) visit with a Parkinson disease specialist in which a modified (excluding assessments of rigidity and balance) UPDRS performed. Using statistical analyses of the five tasks recorded using the smartphone from 10 individuals with PD and 10 controls, we sought to: (1) discriminate whether the participant had PD and (2) predict the modified motor portion of the UPDRS. Results: Twenty participants performed an average of 2.7 tests per day (68.9% adherence) for the study duration (average of 34.4 days) in a home and community setting. The analyses of the five tasks differed between those with Parkinson disease and those without. In discriminating participants with PD from controls, the mean sensitivity was 96.2% (SD 2%) and mean specificity was 96.9% (SD 1.9%). The mean error in predicting the modified motor component of the UPDRS (range 11-34) was 1.26 UPDRS points (SD 0.16). Conclusion: Measuring PD symptoms via a smartphone is feasible and has potential value as a diagnostic support tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Unified Huntington’s Disease Rating Scale (UHDRS) is the principal means of assessing motor impairment in Huntington disease but is subjective and generally limited to in-clinic assessments. Objective: To evaluate the feasibility and ability of wearable sensors to measure motor impairment in individuals with Huntington disease in the clinic and at home. Methods: Participants with Huntington disease and controls were asked to wear five accelerometer-based sensors attached to the chest and each limb for standardized, in-clinic assessments and for one day at home. A secondchest sensor was worn for six additional days at home. Gait measures were compared between controls, participants with Huntington disease, and participants with Huntington disease grouped by UHDRS total motor score using Cohen’s d values. Results: Fifteen individuals with Huntington disease and five controls completed the study. Sensor data were successfully captured from 18 of the 20 participants at home. In the clinic, the standard deviation of step time (timebetween consecutive steps) was increased in Huntington disease (p<0.0001; Cohen’s d=2.61) compared to controls. At home with additional observations, significant differences were observed in seven additional gait measures. The gait of individuals with higher total motor scores (50 or more) differed significantly from those with lower total motor scores (below 50) on multiple measures at home. Conclusions: In this pilot study, the use of wearable sensors in clinic and at home was feasible and demonstrated gait differences between controls, participants with Huntington disease, and participants with Huntington diseasegrouped by motor impairment.