24 resultados para Peripheral blood stem cell transplantation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer stem cells (CSCs) are initiating cells in colorectal cancer (CRC). Colorectal tumours undergo epithelial to mesenchymal transition (EMT)-like processes at the invasive front, enabling invasion and metastasis, and recent studies have linked this process to the acquisition of stem cell-like properties. It is of fundamental importance to understand the molecular events leading to the establishment of cancer initiating cells and how these mechanisms relate to cellular transitions during tumourigenesis. We use an in vitro system to recapitulate changes in CRC cells at the invasive front (mesenchymal-like cells) and central mass (epithelial-like cells) of tumours. We show that the mesoderm inducer BRACHYURY is expressed in a subpopulation of CRC cells that resemble invasive front mesenchymal-like cells, where it acts to impose characteristics of CSCs in a fully reversible manner, suggesting reversible formation and modulation of such cells. BRACHYURY, itself regulated by the oncogene β-catenin, influences NANOG and other 'stemness' markers including a panel of markers defining CRC-CSC whose presence has been linked to poor patient prognosis. Similar regulation of NANOG through BRACHYURY was observed in other cells lines, suggesting this might be a pathway common to cancer cells undergoing mesenchymal transition. We suggest that BRACHYURY may regulate NANOG in mesenchymal-like CRC cells to impose a 'plastic-state', allowing competence of cells to respond to signals prompting invasion or metastasis. Copyright © 2011 UICC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes are now increasingly acknowledged as having fundamental and sophisticated roles in brain function and dysfunction. Unravelling the complex mechanisms that underlie human brain astrocyte-neuron interactions is therefore an essential step on the way to understanding how the brain operates. Insights into astrocyte function to date, have almost exclusively been derived from studies conducted using murine or rodent models. Whilst these have led to significant discoveries, preliminary work with human astrocytes has revealed a hitherto unknown range of astrocyte types with potentially greater functional complexity and increased neuronal interaction with respect to animal astrocytes. It is becoming apparent, therefore, that many important functions of astrocytes will only be discovered by direct physiological interrogation of human astrocytes. Recent advancements in the field of stem cell biology have provided a source of human based models. These will provide a platform to facilitate our understanding of normal astrocyte functions as well as their role in CNS pathology. A number of recent studies have demonstrated that stem cell derived astrocytes exhibit a range of properties, suggesting that they may be functionally equivalent to their in vivo counterparts. Further validation against in vivo models will ultimately confirm the future utility of these stem-cell based approaches in fulfilling the need for human- based cellular models for basic and clinical research. In this review we discuss the roles of astrocytes in the brain and highlight the extent to which human stem cell derived astrocytes have demonstrated functional activities that are equivalent to that observed in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost-effective manufacturing processes. Microcarriers enable the culture of anchorage-dependent cells in stirred-tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow-derived MSC (hBM-MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM-MSC1 underwent more cumulative population doublings over three passages in comparison to hBM-MSC2 and hBM-MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM-MSC expansion. HBM-MSCs were successfully harvested and characterised, demonstrating hBM-MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier-based allogeneic cell therapy manufacture. Large-scale production of human bone-marrow derived mesenchymal stem cells (hBM-MSCs) requires expansion on microcarriers in agitated systems. This study demonstrates the importance of microcarrier selection and presents a systematic methodology for selection of an optimal microcarrier. The study also highlights the impact of an agitated culture environment in comparison to a static system, resulting in a significantly higher hBM-MSC yield under agitated conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidative base lesion 8-oxo-deoxyguanosine (8-oxo-dG) has been identified in DNA isolated from normal tissue and may occur at elevated levels during disease. However, the use of phenol during DNA extraction may artificially elevate the detected levels of this lesion. Herein, we have performed a comparative methodological study using both pronase E and phenol extraction techniques; native or oxidatively stressed DNA was isolated to determine the validity of each extraction technique for the subsequent determination of 8-oxo-dG. Whilst the yields of DNA were comparable, after pronase E extraction there was no detectable induction of 8-oxo-dG in reextracted naked DNA or peripheral blood mononuclear cell DNA that had been oxidatively stressed. However, phenol extraction enhanced the basal levels of 8-oxo-dG detected, and also induced a significant increase in levels of the modified base after exposure to oxidative stress. The latter was dependent on the presence of foetal calf serum in the extracellular medium. We have confirmed that phenol extraction sensitises native DNA to subsequent oxidative damage. In addition, this work shows that the extent of sensitisation occurring during phenol extraction varies with the degree of oxidative damage already incurred and infers that labile guanine sites generated during oxidative stress may be detected as 8-oxo-dG residues after phenol extraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weight loss in advanced cancer patients is refractory to conventional nutritional support. This may be due to metabolic changes mediated by proinflammatory cytokines, hormones, and tumor-derived products. We previously showed that a nutritional supplement enriched with fish oil will reverse weight loss in patients with pancreatic cancer cachexia. The present study examines the effect of this supplement on a number of mediators thought to play a role in cancer cachexia. Twenty weight-losing patients with pancreatic cancer were asked to consume a nutritional supplement providing 600 kcal and 2 g of eicosapentaenoic acid per day. At baseline and after 3 wk, patients were weighed and samples were collected to measure serum concentrations of interleukin (IL)-6 and its soluble receptor tumor necrosis factor receptors I and II, cortisol, insulin, and leptin, peripheral blood mononuclear cell production of IL-1 beta, IL-6, and tumor necrosis factor, and urinary excretion of proteolysis inducing factor. After 3 wk of consumption of the fish oil-enriched nutritional supplement, there was a significant fall in production of IL-6 (from median 16.5 to 13.7 ng/ml, P = 0.015), a rise in serum insulin concentration (from 3.3 to 5.0 mU/l, P = 0.0064), a fall in the cortisol-to-insulin ratio (P = 0.0084), and a fall in the proportion of patients excreting proteolysis inducing factor (from 88% to 40%, P = 0.008). These changes occurred in association with weight gain (median 1 kg, P = 0.024). Various mediators of catabolism in cachexia are modulated by administration of a fish oil-enriched nutritional supplement in pancreatic cancer patients. This may account for the reversal of weight loss in patients consuming this supplement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ageing process is strongly influenced by nutrient balance, such that modest calorie restriction (CR) extends lifespan in mammals. Irisin, a newly described hormone released from skeletal muscles after exercise, may induce CR-like effects by increasing adipose tissue energy expenditure. Using telomere length as a marker of ageing, this study investigates associations between body composition, plasma irisin levels and peripheral blood mononuclear cell telomere length in healthy, non-obese individuals. Segmental body composition (by bioimpedance), telomere length and plasma irisin levels were assessed in 81 healthy individuals (age 43∈±∈15.8 years, BMI 24.3∈±∈2.9 kg/m2). Data showed significant correlations between log-transformed relative telomere length and the following: age (p∈<∈0.001), height (p∈=∈0.045), total body fat percentage (p∈=∈0.031), abdominal fat percentage (p∈=∈0.038) , visceral fat level (p∈<∈0.001), plasma leptin (p∈=∈0.029) and plasma irisin (p∈=∈0.011), respectively. Multiple regression analysis using backward elimination revealed that relative telomere length can be predicted by age (b∈=∈-0.00735, p∈=∈0.001) and plasma irisin levels (b∈=∈0.04527, p∈=∈0.021). These data support the view that irisin may have a role in the modulation of both energy balance and the ageing process. © 2014 The Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidoreductase Trx-1 (thioredoxin 1) is highly conserved and found intra- and extra-cellularly in mammalian systems. There is increasing interest in its capacity to regulate immune function based on observations of altered distribution and expression during ageing and disease. We have investigated previously whether extracellular T-cell or peripheral blood mononuclear cell Trx-1 levels serve as a robust marker of ageing. In a preliminary study of healthy older adults compared with younger adults, we showed that therewas a significant, butweak, relationshipwith age. Interestingly, patientswith rheumatoid arthritis and cancer have been described by others to secrete or express greater surface Trx-1 than predicted. It is interesting to speculate whether a decline in Trx-1 during ageing protects against such conditions, but correspondingly increases risk of disease associated with Trx-1 depletion such as cardiovascular disease. These hypotheses are being explored in the MARK-AGE study, and preliminary findings confirm an inverse correlation of surface Trx-1 with age. We review recent concepts around the role of Trx-1 and its partners in T-cell function on the cell surface and as an extracellular regulator of redox state in a secreted form. Further studies on the redox state and binding partners of surface and secreted Trx-1 in larger patient datasets are needed to improve our understanding of why Trx-1 is important for lifespan and immune function. © The Authors Journal compilation © 2014 Biochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.