21 resultados para Perfíl mole
Resumo:
A thermodynamic analysis which is capable of estimating the austenite/ferrite equilibria in duplex stainless steels has been carried out using the sublattice thermodynamic model. The partitioning of alloying elements between the austenite and ferrite phases has been calculated as a function of temperature. The results showed that chromium partitioning was not influenced significantly by the temperature. The molybdenum, on the other hand, was found to partition preferentially into ferrite phase as the temperature decreases. A strong partitioning of nickel into the austenite was observed to decrease gradually with increasing temperature. Among the alloying elements, average nitrogen concentration was found to have the most profound effect on the phase balance and the partitioning of nitrogen into the austenite. The partitioning coefficient of nitrogen (the ratio of the mole fraction of nitrogen in the austenite to that in the ferrite) was found to be as high as 7.0 around 1300 K. Consequently, the volume fraction of austenite was influenced by relatively small additions of nitrogen. The results are compared with the experimentally observed data in a duplex stainless steel weld metal in conjunction with the solid state δ → δ + γ phase transformation. Particular attention was given to the morphological instability of grain boundary austenite allotriomorphs. A compariso between the experimental results and calculations indicated that the instability associated with irregular austenite perturbations results from the high degree of undercooling. The results suggest that the model can be used successfully to understand the development of the microstructure in duplex stainless steel weld metals.
Resumo:
A study has been made of serrated yielding in two commercial Al-Zn-Mg alloys in the as-quenched condition. The different serration types produced in the two alloys and the shear failure mechanism observed in both notched-bend and tensile testing are related to the mechanisms of dynamic strain ageing occurring during the test. An estimate of 19.7 kJ/mole for the activation energy for exchange of a solute atom and a vacancy in Al-6.2 wt% Zn, 2.5 wt% Mg has been made. © 1981.
Resumo:
The paper presents the simulation of the pyrolysis vapors condensation process using an Eulerian approach. The condensable volatiles produced by the fast pyrolysis of biomass in a 100 g/h bubbling fluidized bed reactor are condensed in a water cooled condenser. The vapors enter the condenser at 500 °C, and the water temperature is 15 °C. The properties of the vapor phase are calculated according to the mole fraction of its individual compounds. The saturated vapor pressure is calculated for the vapor mixture using a corresponding states correlation and assuming that the mixture of the condensable compounds behave as a pure fluid. Fluent 6.3 has been used as the simulation platform, while the condensation model has been incorporated to the main code using an external user defined function. © 2011 American Chemical Society.
Resumo:
The solubility of telmisartan (form A) in nine organic solvents (chloroform, dichloromethane, ethanol, toluene, benzene, 2-propanol, ethyl acetate, methanol and acetone) was determined by a laser monitoring technique at temperatures from 277.85 to 338.35 K. The solubility of telmisartan (form A) in all of the nine solvents increased with temperature as did the rates at which the solubility increased except in chloroform and dichloromethane. The mole fraction solubility in chloroform is higher than that in dichloromethane, which are both one order of magnitude higher than those in the other seven solvents at the experimental temperatures. The solubility data were correlated with the modified Apelblat equation and λh equations. The results show that the λh equation is in better agreement with the experimental data than the Apelblat equation. The relative root mean square deviations (σ) of the λh equation are in the range from 0.004 to 0.45 %. The dissolution enthalpies, entropies and Gibbs energies of telmisartan in these solvents were estimated by the Van’t Hoff equation and the Gibbs equation. The melting point and the fusion enthalpy of telmisartan were determined by differential scanning calorimetry.
Resumo:
Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.
Resumo:
A novel approach to the determination of steroid entrapment in the bilayers of aerosolised liposomes has been introduced using high-sensitivity differential scanning calorimetry (DSC). Proliposomes were dispersed in water within an air-jet nebuliser and the energy produced during atomisation was used to hydrate the proliposomes and generate liposome aerosols. Proliposomes that included the steroid beclometasone dipropionate (BDP) produced lower aerosol and lipid outputs than steroid-free proliposomes. Size analysis and transmission electron microscopy showed an evidence of liposome formation within the nebuliser, which was followed by deaggregation and size reduction of multilamellar liposomes on nebulisation to a two-stage impinger. For each formulation, no difference in thermal transitions was observed between delivered liposomes and those remaining in the nebuliser. However, steroid (5 mole%) lowered the onset temperature and the enthalpy of the pretransition, and produced a similar onset temperature and larger enthalpy of the main transition, with broadened pretransition and main transitions. This indicates that BDP was entrapped and exhibited an interaction with the liposome phospholipid membranes. Since the pretransition was depressed but not completely removed and no phase separation occurred, it is suggested that the bilayers of the multilamellar liposomes can entrap more than 5 mole% BDP. Overall, liposomes were generated from proliposomes and DSC investigations indicated that the steroid was entrapped in the bilayers of aerosolised multilamellar vesicles.