19 resultados para Peptidase
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a physiological insulin releasing peptide. We have developed two novel fatty acid derivatized GIP analogues, which bind to serum albumin and demonstrate enhanced duration of action in vivo. GIP(Lys16PAL) and GIP(Lys37PAL) were resistant to dipeptidyl peptidase IV (DPP IV) degradation. In vitro studies demonstrated that GIP analogues retained their ability to activate the GIP receptor through production of cAMP and to stimulate insulin secretion. Intraperitoneal administration of GIP analogues to obese diabetic (ob/ob) mice significantly decreased the glycemic excursion and elicited increased and prolonged insulin responses compared to native GIP. A protracted glucose-lowering effect was observed 24 h following GIP(Lys37PAL) administration. Once a day injection for 14 days decreased nonfasting glucose, improved glucose tolerance, and enhanced the insulin response to glucose. These data demonstrate that fatty acid derivatized GIP peptides represent a novel class of long-acting stable GIP analogues for therapy of type 2 diabetes. © 2006 American Chemical Society.
Resumo:
OBJECTIVE: This 12-week study assessed the efficacy and tolerability of imeglimin as add-on therapy to the dipeptidyl peptidase-4 inhibitor sitagliptin in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. RESEARCH DESIGN AND METHODS: In a multicenter, randomized, double-blind, placebo-controlled, parallel-group study, imeglimin (1,500 mg b.i.d.) or placebo was added to sitagliptin (100 mg q.d.) over 12weeks in 170 patientswith type 2 diabetes (mean age 56.8 years; BMI 32.2 kg/m2) that was inadequately controlled with sitagliptin alone (A1C ≥7.5%) during a 12-week run-in period. The primary ef ficacy end point was the change in A1C from baseline versus placebo; secondary end points included corresponding changes in fasting plasma glucose (FPG) levels, strati fication by baseline A1C, and percentage of A1C responders. RESULTS: Imeglimin reduced A1C levels (least-squares mean difference) from baseline (8.5%) by 0.60% compared with an increase of 0.12% with placebo (between-group difference 0.72%, P < 0.001). The corresponding changes in FPG were -0.93 mmol/L with imeglimin vs. -0.11 mmol/L with placebo (P = 0.014). With imeglimin, the A1C level decreased by ≥0.5% in 54.3% of subjects vs. 21.6% with placebo (P < 0.001), and 19.8%of subjects receiving imeglimin achieved a decrease in A1C level of ≤7% compared with subjects receiving placebo (1.1%) (P = 0.004). Imeglimin was generally well tolerated, with a safety pro file comparable to placebo and no related treatment-emergent adverse events. CONCLUSIONS: Imeglimin demonstrated incremental efficacy benefits as add-on therapy to sitagliptin, with comparable tolerability to placebo, highlighting the potential for imeglimin to complement other oral antihyperglycemic therapies. © 2014 by the American Diabetes Association.
Resumo:
Several pharmacotherapies have recently become available for addition to lifestyle measures to assist the management of coexistent type 2 diabetes and obesity. These are mostly administered as add-on to metformin or as alternative therapies if metformin is not appropriate. The sodium–glucose cotransporter 2 inhibitors (dapagliflozin, canagliflozin and empagliflozin) act by eliminating excess glucose in the urine. These agents provide a non-insulin-dependent mechanism to reduce hyperglycaemia and facilitate weight loss without causing frank hypoglycaemia. Their efficacy requires the individual to have adequate renal function. The glucagon-like peptide-1 (GLP-1) receptor agonists (exenatide, liraglutide, lixisenatide, dulaglutide and albiglutide [the last at the pre-launch stage at the time of writing]) are injected subcutaneously. Different members of the class offer different time courses for their onset and duration of action. Each potentiates insulin secretion and reduces glucagon secretion in a glucose-dependent manner to address prandial glycaemic excursions while avoiding interprandial hypoglycaemia. A satiety effect of these agents assists weight reduction, but delayed gastric emptying can cause initial nausea. The dipeptidyl peptidase-4 inhibitor class now comprises sitagliptin, vildagliptin, saxagliptin, linagliptin and alogliptin. These agents offer similar glucose-lowering efficacy without weight gain or hypoglycaemia by boosting the half-life of endogenous incretins, particularly GLP-1. A fixed-ratio injected combination of insulin degludec with liraglutide (IDegLira) has recently been launched and further agents to address hyperglycaemia and assist weight loss are advancing in development.
Resumo:
Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies.