19 resultados para Payment by performance
Resumo:
Long-haul high speed optical transmission systems are significantly distorted by the interplay between the electronic chromatic dispersion (CD) equalization and the local oscillator (LO) laser phase noise, which leads to an effect of equalization enhanced phase noise (EEPN). The EEPN degrades the performance of optical communication systems severely with the increment of fiber dispersion, LO laser linewidth, symbol rate, and modulation format. In this paper, we present an analytical model for evaluating the performance of bit-error-rate (BER) versus signal-to-noise ratio (SNR) in the n-level phase shift keying (n-PSK) coherent transmission system employing differential carrier phase estimation (CPE), where the influence of EEPN is considered. Theoretical results based on this model have been investigated for the differential quadrature phase shift keying (DQPSK), the differential 8-PSK (D8PSK), and the differential 16-PSK (D16PSK) coherent transmission systems. The influence of EEPN on the BER performance in term of the fiber dispersion, the LO phase noise, the symbol rate, and the modulation format are analyzed in detail. The BER behaviors based on this analytical model achieve a good agreement with previously reported BER floors influenced by EEPN. Further simulations have also been carried out in the differential CPE considering EEPN. The results indicate that this analytical model can give an accurate prediction for the DQPSK system, and a leading-order approximation for the D8PSK and the D16PSK systems.
Resumo:
Porous tin films as anode for lithium-ion batteries are electrodeposited on graphite paper. Homogeneous tin films with significant void space accommodate the volume change during tin lithiation/delithiation. Through adjusting the electrodeposition currents and time, the morphologies and void space of tin films on graphite paper are controllable. At fixed electrodeposition current densities, the prolonged electrodeposition time plays the role in growing big tin particles and resulting the disappearance of void space among tin particles. The increased electrodeposition current plays the role to increase the quantity of tin seeds in thickness of tin film, and the void space among tin particles remains but the thick film limits its electrochemical performance. The tin films electrodeposited at an optimized current densities and for an optimized electrodeposition time, present the best electrochemical performance, because the tin nanoparticles are well dispersed on graphite substrate including void space. The tin film electrodeposited at 0.2 A cm-2 for 2 min shows the capacity of 1.0 mAh cm-2 after 50 charge/discharge cycles. The void space of tin film is very important for the best capacity and cyclic ability. The metallic tin film produced at 0.4 A cm-2 for 3 min remains the uniform and microporous structure after charge/discharge for 50 cycles.
Resumo:
This paper examines the extent to which both network structure and spatial factors impact on the organizational performance of universities as measured by the generation of industrial research income. Drawing on data concerning the interactions of universities in the UK with large research and development (R&D)-intensive firms, the paper employs both social network analysis and regression analysis. It is found that the structural position of a university within networks with large R&D-intensive firms is significantly associated with the level of research income gained from industry. Spatial factors, on the other hand, are not found to be clearly associated with performance, suggesting that universities operate on a level playing field across regional environments once other factors are controlled for.
Resumo:
The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young’s modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.