24 resultados para POLYMER-MATRIX COMPOSITES
Resumo:
Molecularly imprinted polymers (MIPs) are crosslinked polymers containing bespoke functionalised cavities arising from the inclusion of template molecules in the polymerisation mixture and their later extraction. When the polymers are prepared functional polymerisable monomers are included which become part of the polymer matrix and serve to decorate the cavities with functionality appropriate to the template molecules. Overall, binding sites are created which have a memory for the template both in terms of shape and matching functionality. Fluorescent molecularly imprinted polymers have the benefit of a fluorophore in their cavities that may respond to the presence of bound test compound by a change in their fluorescence output. The work presented falls into three main areas. A series of fluorescent MIPs was prepared with a view to generating material capable of mimicking the binding characteristics of the metabolically important cytochrome isoform CYP2D6. The MIPs re-bound their templates and various cross-reactivities were encountered for test compound/drug recognition. One MIP in particular exhibited a rational discrimination amongst the related synthetic templates and was reasonably successful in recognising CYP2D6 substrates from the drug set tested. In order to give some insights into binding modes in MIPs, attempts were made to produce functional monomers containing two or more fluorophores that could be interrogated independently. A model compound was prepared which fitted the dual-fluorophore criteria and which will be the basis for future incorporation into MIPs. A further strand to this thesis is the deliberate incorporation of hydrophobic moieties into fluorescent functional monomers so that the resulting imprinted cavities might be biomimetic in their impersonation of enzyme active sites. Thus the imprinted cavities had specific hydrophobic regions as well as the usual polar functionality with which to interact with binding test compounds.
Resumo:
The mechanical properties and wear behaviour of B(SiC) fibre-reinforced metal matrix composites (MMCs) and aluminium alloy (2014) produced by metal infiltration technique were determined. Tensile tests were peliormed at different conditions on both the alloy matrix and its composite, and the tensile fracture surfaces were also examined by Scanning Electron Microscopy (SEM). Dry wear of the composite materials sliding on hardened steel was studied using a pin-on-disc type machine. The effect of fibre orientation on wear rate was studied to provide wear resistance engineering data on the MMCs. Tests were carried out with the wear surface sliding direction set normal, parallel and anti-parallel to the fibre axis. Experiments were perfonned for sliding speeds of 0.6, 1.0 and 1.6 m/s for a load range from 12 N to 60 N. A number of sensitive techniques were used to examine worn surface and debris, i.e: Scanning Electron Microscopy (SEM), Backscattered Electron Microscopy (BSEM) and X-ray Photoelectron Spectroscopy (XPS). Finally, the effect of fibre orientation on the wear rate of the Borsic-reinforced plastic matrix composites (PMCs) produced by hot pressing technique was also investigated under identical test conditions. It was found that the composite had a markedly increased tensile strength compared with the matrix. The wear results also showed that the composite exhibited extremely low wear rates compared to the matrix material and the wear rate increased with increasing sliding speed and normal load. The effect of fibre orientation was marked, the lowest wear rates were obtained by arranging the fibre perpendicular to the sliding surface, while the highest wear was obtained for the parallel orientation. The coefficient of friction was found to be lowest in the parallel orientation than the others. Wear of PMCs were influenced to the greatest extent by these test parameters although similar findings were obtained for both composites. Based on the results of analyses using SEM, BSED and XPS, possible wear mechanisms are suggested to explain the wear of these materials.
Resumo:
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.
Resumo:
The effect of organically modified clay on the morphology, rheology and mechanical properties of high-density polyethylene (HDPE) and polyamide 6 (PA6) blends (HDPE/PA6 = 75/25 parts) is studied. Virgin and filled blends were prepared by melt compounding the constituents using a twin-screw extruder. The influence of the organoclay on the morphology of the hybrid was deeply investigated by means of wide-angle X-ray diffractometry, transmission and scanning electron microscopies and quantitative extraction experiments. It has been found that the organoclay exclusively places inside the more hydrophilic polyamide phase during the melt compounding. The extrusion process promotes the formation of highly elongated and separated organoclay-rich PA6 domains. Despite its low volume fraction, the filled minor phase eventually merges once the extruded pellets are melted again, giving rise to a co-continuous microstructure. Remarkably, such a morphology persists for long time in the melt state. A possible compatibilizing action related to the organoclay has been investigated by comparing the morphology of the hybrid blend with that of a blend compatibilized using an ethylene–acrylic acid (EAA) copolymer as a compatibilizer precursor. The former remains phase separated, indicating that the filler does not promote the enhancement of the interfacial adhesion. The macroscopic properties of the hybrid blend were interpreted in the light of its morphology. The melt state dynamics of the materials were probed by means of linear viscoelastic measurements. Many peculiar rheological features of polymer-layered silicate nanocomposites based on single polymer matrix were detected for the hybrid blend. The results have been interpreted proposing the existence of two distinct populations of dynamical species: HDPE not interacting with the filler, and a slower species, constituted by the organoclay-rich polyamide phase, which slackened dynamics stabilize the morphology in the melt state. In the solid state, both the reinforcement effect of the filler and the co-continuous microstructure promote the enhancement of the tensile modulus. Our results demonstrate that adding nanoparticles to polymer blends allows tailoring the final properties of the hybrid, potentially leading to high-performance materials which combine the advantages of polymer blends and the merits of polymer nanocomposites.
Resumo:
The fate of vitamin E and the formation and identification of its transformation products were investigated at different stages of the manufacturing process of commercially produced cross-linked (by γ-irradiation) UHMWPE stabilised with vitamin E (vitamin E infused-post irradiation) used for tibia-components (as articulating surfaces) in total knee arthroplasty (total knee replacement). Vitamin E (α-tocopherol) and its transformation products were extracted from microtomed Tibia films and the different products were separated, isolated, purified using high performance liquid chromatography (HPLC), and characterised by spectroscopic methods and LC-MS. The amount of vitamin E and that of the products formed in the different Tibia samples and in their extracts were also quantified using FTIR and HPLC analysis and calibration curves. Thorough analysis of the Tibia extracts has shown that a number of vitamin E transformation products were formed at different concentrations at two selected stages of the implant manufacturing process that is before and after sterilisation by γ-irradiation. The identified products were found to correspond mainly to different stereoisomeric forms of a small number of vitamin E transformation products. Most of the observed products were of dimeric and trimeric nature with their identity confirmed through a detailed study of their spectral and chromatographic characteristics. It was found that the products of vitamin E, prior to the sterilisation step but after the crosslinking and doping of vitamin E, were mainly the dihydroxydimers and trimers (Tibia samples at this stage are referred to as “Tibia-VEPE”). After sterilisation and completion of the manufacturing process, additional dimers of vitamin E were also formed (Tibia samples at this stage are referred to as ‘Tibia-VEPE-Sterile’), Furthermore, two tocopherol-derived aldehydes (aldehyde 5-formyl-γ-tocopherol and aldehyde 7-formyl-γ-tocopherol) were also formed but at very low concentrations especially in the Tibia-VEPE-Sterile samples. The question of whether vitamin E becomes chemically reacted (grafted) onto the polymer matrix during the manufacturing process of the Tibia is also addressed.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.
Resumo:
Polymer composites are one of the most attractive near-term means to exploit the unique properties of carbon nanotubes and graphene. This is particularly true for composites aimed at electronics and photonics, where a number of promising applications have already been demonstrated. One such example is nanotube-based saturable absorbers. These can be used as all-optical switches, optical amplifier noise suppressors, or mode-lockers to generate ultrashort laser pulses. Here, we review various aspects of fabrication, characterization, device implementation and operation of nanotube-polymer composites to be used in photonic applications. We also summarize recent results on graphene-based saturable absorbers for ultrafast lasers.
Resumo:
This thesis describes the synthesis of functionalised polymeric material by variety of free-radical mediated polymerisation techniques including dispersion emulsion, seeded emulsion, suspension and bulk polymerisation reactions. Organic fluorophores and nanoparticles such as quantum dots were incorporated within polymeric materials, in particular, thiol-functionalised polymer microspheres, which were fluorescently labelled either during synthesis or by covalent attachment post synthesis. The resultant fluorescent polymeric conjugates were then assessed for their utility in biological systems as an analytical tool for cells or biological structures. Quantum dot labelled, thiol-functionalised microspheres were assessed for their utility in the visualisation and tracking of red blood cells. Determination of the possible internalisation of fluorescent microspheres into red blood cells was required before successful tracking of red blood cells could take place. Initial work appeared to indicate the presence of fluorescent microspheres inside red blood cells by the process of beadfection. A range of parameters were also investigated in order to optimise beadfection. Thiol-functionalised microspheres labelled successfully with organic fluorophores were used to image the tear film of the eye. A description of problems encountered with the covalent attachment of hydrophilic, thiol-reactive fluorescent dyes to a variety of modified polymer microspheres is also included in this section. Results indicated large microspheres were particularly useful when tracking the movement of fluid along the tear meniscus. Functional bulk polymers were synthesised for assessment of their interaction with titanium dioxide nanoparticles. Thiol-functionalised polymethyl methacrylate and spincoated thiouronium-functionalised polystyrene appeared to facilitate the attachment of titanium dioxide nanoparticles. Interaction assays included the use of XPS analysis and processes such as centrifugation. Attempts to synthesise 4-vinyl catechol, a compound containing hydroxyl moieties with potential for coordination with titanium dioxide nanoparticles, were also carried out using 3,4-dihydroxybenzaldehyde as the starting material.