30 resultados para PATHOGENIC FUNGI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three species of fungi Sporotrichum thermophile, Botrytis cinerea and Trichoderma viride were assessed for their ability to utilize a variety of plant cell substrates (methanol extracted), Catharanthus roseus, Daucus carota, re-autoclaved C. roseus, re-autoclaved D. carota) which preliminary studies had indicated contained the necessary nutrients for fungal growth. Incubated in a suitable manner all three fungal species were able to grow on C. roseus and D. carota plant cell biomass in addition to material which had undergone methanol extraction or a re-autoclaving process to remove soluble components. Fungal biomass yields were markedly influenced by substrate, with each fungal species demonstrating a preference for particular plant cell material. Incubation conditions i.e. static or shaken and temperature also proved important. Release of glucose (i.e. values higher than Day 0) promoted by fungal breakdown of plant cell biomass was only noted with methanol extracted, re-autoclaved C. roseus and re-autoclaved D. carota material. A re-autoclaved substrate was also generally associated with high fungal C1, Cx, B-glucosidase and endo-polygalacturonase activity. In addition for each enzyme highest values were usually obtained from a particular fungal species. Buffering cultures at pH 3 or 5 further influenced enzyme activity, however in a majority of cases when flasks were unbuffered and the pH rose naturally to alkaline values higher enzyme activity was recorded. Likewise Tween 80 addition had only a limited beneficial effect. Finally filtrates containing glucose produced both from the re-autoclaving process and through fungal activity on plant cell biomass were utilized for Fusarium oxysporum, Saccharomyces cerevisiae and C. roseus plant cell culture. Although reasonable fungal biomass was obtained the use of such filtrates proved unsuitable for plant cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported in this thesis was carried out to contribute to the knowledge of the effects of substrate water availability or water activity (a ) on fungal growth parameters and its implications in the preparationw of materials susceptible to biodeterioration. Fungi were isolated from soils of different ecological sites at a range of substrate aw levels controlled by sodium chloride (NaCl). Three groups of fungi were isolated : firstly, those isolated only at high a (aw about 0.997).secondly, those isolated at high and decreasing aw (aw 0.997 to 0.85) and finally, those isolated at only decreased aw (aw O.95 to 0.80). From these isolations, test fungi were selected to study the effects of pH, temperature, exo-enzyme production and biocide efficacy at decreased aw levels, with glycerol and NaCl as a controlling solutes. The linear extension rates of the fungi increased at all test pH values near optimum a of growth. Test fungi of the Aspergillus glaucus group were found to be most resistant to low aw. Growth and survival of vegetative and fruiting bodies at elevated temperatures were enhanced with the addition of a controlling solutes. A. flavus, A. fumigatus displayed high heat resistance and A. amstelodami, A. versicolor and Penicillium citrinum displayed low heat resistance at high aw levels and vice versa at low aw levels. Amylase, lipase and protease activities were studied at lowered aw , using modifications of the test tube method of Raute11a and Cowling. Amylase and protease production in most xerophilic fungi ceased around 0.80 aw , but lipase production in some xerophilic fungi, including A. glatlcus fungi, was up to and including 0.70 aw with g1ycero1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational genome analysis enables systematic identification of potential immunogenic proteins within a pathogen. Immunogenicity is a system property that arises through the interaction of host and pathogen as mediated through the medium of a immunogenic protein. The overt dissimilarity of pathogenic proteins when compared to the host proteome is conjectured by some to be the determining principal of immunogenicity. Previously, we explored this idea in the context of Bacterial, Viral, and Fungal antigen. In this paper, we broaden and extend our analysis to include complex antigens of eukaryotic origin, arising from tumours and from parasite pathogens. For both types of antigen, known antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. In contrast to our previous results, both visual inspection and statistical evaluation indicate a much wider range of homologues and a significant level of discrimination; but, as before, we could not determine a viable threshold capable of properly separating non-antigen from antigen. In concert with our previous work, we conclude that global proteome dissimilarity is not a useful metric for immunogenicity for presently available antigens arising from Bacteria, viruses, fungi, parasites, and tumours. While we see some signal for certain antigen types, using dissimilarity is not a useful approach to identifying antigenic molecules within pathogen genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant oxylipins are a large family of metabolites derived from polyunsaturated fatty acids. The characterization of mutants or transgenic plants affected in the biosynthesis or perception of oxylipins has recently emphasized the role of the so-called oxylipin pathway in plant defense against pests and pathogens. In this context, presumed functions of oxylipins include direct antimicrobial effect, stimulation of plant defense gene expression, and regulation of plant cell death. However, the precise contribution of individual oxylipins to plant defense remains essentially unknown. To get a better insight into the biological activities of oxylipins, in vitro growth inhibition assays were used to investigate the direct antimicrobial activities of 43 natural oxylipins against a set of 13 plant pathogenic microorganisms including bacteria, oomycetes, and fungi. This study showed unequivocally that most oxylipins are able to impair growth of some plant microbial pathogens, with only two out of 43 oxylipins being completely inactive against all the tested organisms, and 26 oxylipins showing inhibitory activity toward at least three different microbes. Six oxylipins strongly inhibited mycelial growth and spore germination of eukaryotic microbes, including compounds that had not previously been ascribed an antimicrobial activity such as 13-keto-9(Z),11(Z),15(Z)- octadecatrienoic acid and 12-oxo-10,15(Z)-phytodienoic acid. Interestingly this first large-scale comparative assessment of the antimicrobial effects of oxylipins reveals that regulators of plant defense responses are also the most active oxylipins against eukaryotic microorganisms, suggesting that such oxylipins might contribute to plant defense through their effects both on the plant and on pathogens, possibly through related mechanisms. © 2005 American Society of Plant Biologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.