17 resultados para Optical detector readout concepts
Resumo:
A cost-effective radio over fiber system to up-convert and transmit multigigabit signals at 60 GHz is presented. A low intermediate frequency OFDM signal is used to directly modulate a laser, which is combined with an independent unmodulated laser. The generated millimeter wave frequency can be adjusted by tuning the frequency separation between the lasers. Since no external modulator is required, this technique is low-cost and it is easily integrable in a single chip. In this paper, we present numerical results showing the feasibility of generating an IEEE 802.15.3c compliant 3.5-Gbps 60-GHz OFDM. We show that received signal quality is not limited by the lasers' linewidth but by the relative intensity noise. © 2013 IEEE.
Resumo:
Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.