52 resultados para Optical data processing
Resumo:
Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses, and on the applications of advanced pulse waveforms in all-optical signal processing. Among other topics, we will discuss ultrahigh repetition-rate pulse sources, the generation of parabolic-shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © 2012 IEEE.
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.
Resumo:
We introduce a novel transmission technique of periodic in-line all-optical format conversion between return-to-zero and non-return-to-zero-like aimed at delaying the accumulation of format-specific impairments. A particular realization of this approach using in-line normal dispersion fibre-enhanced nonlinear optical loop mirrors at 40Gbit/s data rate is presented.
Resumo:
We propose a new all-optical signal processing technique to enhance the performance of a return-to-zero optical receiver, which is based on nonlinear temporal pulse broadening and flattening in a normal dispersion fiber and subsequent slicing of the pulse temporal waveform. The potential of the method is demonstrated by application to timing jitter-and noise-limited transmission at 40 Gbit/s. © 2005 Optical Society of America.
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.
Resumo:
Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses, and on the applications of advanced pulse waveforms in all-optical signal processing. Among other topics, we will discuss ultrahigh repetition-rate pulse sources, the generation of parabolic-shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © 2012 IEEE.
Resumo:
We review our recent research on the design and fabrication of advanced fiber Bragg grating structures for optical signal processing. FBG based processors including optical differentiators, pulse shapers and modulation format converters are discussed. © 2015 OSA.
Resumo:
The development of an all-optical communications infrastructure requires appropriate optical switching devices and supporting hardware. This thesis presents several novel fibre lasers which are useful pulse sources for high speed optical data processing and communications. They share several attributes in common: flexibility, stability and low-jitter output. They all produce short (picosecond) and are suitable as sources for soliton systems. The lasers are all-fibre systems using erbium-doped fibre for gain, and are actively-modelocked using a dual-wavelength nonlinear optical loop mirror (NOLM) as a modulator. Control over the operating wavelength and intra-cavity dispersion is obtained using a chirped in-fibre Bragg grating.Systems operating both at 76MHz and gigahertz frequencies are presented, the latter using a semiconductor laser amplifier to enhance nonlinear action in the loop mirror. A novel dual-wavelength system in which two linear cavities share a common modulator is presented with results which show that the jitter between the two wavelengths is low enough for use in switching experiments with data rates of up to 130Gbit/s.
Resumo:
Serial and parallel interconnection of photonic devices is integral to the construction of any all-optical data processing system. This thesis presents results from a series of experiments centering on the use of the nonlinear-optical loop mirror (NOLM) switch in architectures for the manipulation and generation of ultrashort pulses. Detailed analysis of soliton switching in a single NOLM and cascade of two NOLM's is performed, centering on primary limitations to device operation, effect of cascading on amplitude response, and impact of switching on the characteristics of incident pulses. By using relatively long input pulses, device failure due to stimulated Raman generation is postponed to demonstrate multiple-peaked switching for the first time. It is found that while cascading leads to a sharpening of the overall switching characteristic, pulse spectral and temporal integrity is not significantly degraded, and emerging pulses retain their essential soliton character. In addition, by including an asymmetrically placed in-fibre Bragg reflector as a wavelength selective loss element in the basic NOLM configuration, both soliton self-switching and dual-wavelength control-pulse switching are spectrally quantised. Results are presented from a novel dual-wavelength laser configuration generating pulse trains with an ultra-low rms inter-pulse-stream timing jitter level of 630fs enabling application in ultrafast switching environments at data rates as high as 130GBits/s. In addition, the fibre NOLM is included in architectures for all-optical memory, demonstrating storage and logical inversion of a 0.5kByte random data sequence; and ultrafast phase-locking of a gain-switched distributed feedback laser at 1.062GHz, the fourteenth harmonic of the system baseband frequency. The stringent requirements for environmental robustness of these architectures highlight the primary weaknesses of the NOLM in its fibre form and recommendations to overcome its inherent drawbacks are presented.
Resumo:
In Fourier domain optical coherence tomography (FD-OCT), a large amount of interference data needs to be resampled from the wavelength domain to the wavenumber domain prior to Fourier transformation. We present an approach to optimize this data processing, using a graphics processing unit (GPU) and parallel processing algorithms. We demonstrate an increased processing and rendering rate over that previously reported by using GPU paged memory to render data in the GPU rather than copying back to the CPU. This avoids unnecessary and slow data transfer, enabling a processing and display rate of well over 524,000 A-scan/s for a single frame. To the best of our knowledge this is the fastest processing demonstrated to date and the first time that FD-OCT processing and rendering has been demonstrated entirely on a GPU.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
All-optical technologies for data processing and signal manipulation are expected to play a major role in future optical communications. Nonlinear phenomena occurring in optical fibre have many attractive features and great, but not yet fully exploited potential in optical signal processing. Here, we overview our recent results and advances in developing novel photonic techniques and approaches to all-optical processing based on fibre nonlinearities. Amongst other topics, we will discuss phase-preserving optical 2R regeneration, the possibility of using parabolic/flat-top pulses for optical signal processing and regeneration, and nonlinear optical pulse shaping. A method for passive nonlinear pulse shaping based on pulse pre-chirping and propagation in a normally dispersive fibre will be presented. The approach provides a simple way of generating various temporal waveforms of fundamental and practical interest. Particular emphasis will be given to the formation and characterization of pulses with a triangular intensity profile. A new technique of doubling/copying optical pulses in both the frequency and time domains using triangular-shaped pulses will be also introduced.
Resumo:
A novel simple all-optical nonlinear pulse processing technique using loop mirror intensity filtering and nonlinear broadening in normal dispersion fiber is described. The pulse processor offers reamplification and cleaning up of the optical signals and phase margin improvement. The efficiency of the technique is demonstrated by application to 40-Gb/s return-to-zero optical data streams.
Resumo:
A novel simple all-optical nonlinear pulse processing technique using loop mirror intensity filtering and nonlinear broadening in normal dispersion fiber is described. The pulse processor offers reamplification and cleaning up of the optical signals and phase margin improvement. The efficiency of the technique is demonstrated by application to 40-Gb/s return-to-zero optical data streams. © 2004 IEEE.