19 resultados para Oocyte competence
Resumo:
Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P <0.05). Maternal LPD offspring also exhibited elevated systolic blood pressure (SBP) in males at 9 and 15 weeks and in both sexes at 21 weeks (P <0.05). Male LPD offspring hypertension was accompanied by attenuated arterial responsiveness in vitro to vasodilators acetylcholine and isoprenaline (P <0.05). LPD female offspring adult kidneys were also smaller, but had increased nephron numbers (P <0.05). Moreover, the relationship between SBP and kidney or heart size or nephron number was altered by diet treatment (P <0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome. © Journal compilation © 2008 The Physiological Society.
Resumo:
Project Report: The PHAR-IN ("Competences for industrial pharmacy practice in biotechnology") looked at whether there is a difference in how industrial employees and academics rank competences for practice in the biotechnological industry. A small expert panel consisting of the authors of this paper produced a biotechnology competence framework by drawing up an initial list of competences then ranking them in importance using a three-stage Delphi process. The framework was next evaluated and validated by a large expert panel of academics (n = 37) and industrial employees (n = 154). Results show that priorities for industrial employees and academics were similar. The competences for biotechnology practice that received the highest scores were mainly in: . "Research and Development", . "Upstream" and "Downstream" Processing', " . "Product development and formulation", " . "Aseptic processing", ."Analytical methodology", . "Product stability", and . "Regulation". The main area of disagreement was in the category "Ethics and drug safety" where academics ranked competences higher than did industrial employees.
Resumo:
UK engineering standards are regulated by the Engineering Council (EC) using a set of generic threshold competence standards which all professionally registered Chartered Engineers in the UK must demonstrate, underpinned by a separate academic qualification at Masters Level. As part of an EC-led national project for the development of work-based learning (WBL) courses leading to Chartered Engineer registration, Aston University has started an MSc Professional Engineering programme, a development of a model originally designed by Kingston University, and build around a set of generic modules which map onto the competence standards. The learning pedagogy of these modules conforms to a widely recognised experiential learning model, with refinements incorporated from a number of other learning models. In particular, the use of workplace mentoring to support the development of critical reflection and to overcome barriers to learning is being incorporated into the learning space. This discussion paper explains the work that was done in collaboration with the EC and a number of Professional Engineering Institutions, to design a course structure and curricular framework that optimises the engineering learning process for engineers already working across a wide range of industries, and to address issues of engineering sustainability. It also explains the thinking behind the work that has been started to provide an international version of the course, built around a set of globalised engineering competences. © 2010 W J Glew, E F Elsworth.