59 resultados para On-Line Learning Resources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online learning is discussed from the viewpoint of Bayesian statistical inference. By replacing the true posterior distribution with a simpler parametric distribution, one can define an online algorithm by a repetition of two steps: An update of the approximate posterior, when a new example arrives, and an optimal projection into the parametric family. Choosing this family to be Gaussian, we show that the algorithm achieves asymptotic efficiency. An application to learning in single layer neural networks is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of on-line gradient descent learning for general two-layer neural networks. An analytic solution is presented and used to investigate the role of the learning rate in controlling the evolution and convergence of the learning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on an experiment of using a publisher provided web-based resource to make available a series of optional practice quizzes and other supplementary material to all students taking a first year introductory microeconomics module. The empirical analysis evaluates the impact these supplementary resources had on student learning. First, we investigate which students decided to make use of the resources. Then, we analyse the impact this decision has on their subsequent performance in the examination at the end of the module. The results show that, even after taking into account the possibility of self-selection bias, using the web-based resource had a significant positive effect on student learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Gaussian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of on-line learning in multilayer neural networks where training examples are sampled with repetition and where the number of examples scales with the number of network weights. The analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations for a set of macroscopic variables from which both training and generalization errors can be calculated. We focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers are introduced to improve the network performance. The dependence of the dynamics on the noise level, with and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in structurally unrealizable scenarios. The theoretical results show good agreement with those obtained by computer simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the study of a non-sequential identification technique, so that it may be applied to the identification of process plant mathematical models from process measurements with the greatest degree of accuracy and reliability. In order to study the accuracy of the technique under differing conditions, simple mathematical models were set up on a parallel hybrid. computer and these models identified from input/output measurements by a small on-line digital computer. Initially, the simulated models were identified on-line. However, this method of operation was found not suitable for a thorough study of the technique due to equipment limitations. Further analysis was carried out in a large off-line computer using data generated by the small on-line computer. Hence identification was not strictly on-line. Results of the work have shovm that the identification technique may be successfully applied in practice. An optimum sampling period is suggested, together with noise level limitations for maximum accuracy. A description of a double-effect evaporator is included in this thesis. It is proposed that the next stage in the work will be the identification of a mathematical model of this evaporator using the teclmique described.