21 resultados para Oil spills and wildlife
Resumo:
In this study the impact of senescence and harvest time in Miscanthus on the quality of fast pyrolysis liquid (bio-oil) was investigated. Bio-oil was produced using a 1kgh fast pyrolysis reactor to obtain a quantity of bio-oil comparable with existing industrial reactors. Bio-oil stability was measured using viscosity, water content, pH and heating value changes under specific conditions. Plant developmental characteristics were significantly different (P=0.05) between all harvest points. The stage of crop senescence was correlated with nutrient remobilisation (N, P, K; r=0.9043, r=0.9920, r=0.9977 respectively) and affected bio-oil quality. Harvest time and senescence impacted bio-oil quality and stability. For fast pyrolysis processing of Miscanthus, the harvest time of Miscanthus can be extended to cover a wider harvest window whilst still maintaining bio-oil quality but this may impact mineral depletion in, and long term sustainability of, the crop unless these minerals can be recycled. © 2012 Elsevier Ltd.
Resumo:
Rice husks from Brunei were subjected via intermediate pyrolysis for bio-oil production. Two main objectives were set out for this study. The application of intermediate pyrolysis on Brunei rice husk for the production of bio-oil is the main objective of this experiment. Characterisation of the rice husks was inclusive as a pre-requisite step to assess the suitability as feedstock for production of liquid fuels. Following on from the characterisation results, a temperature of 450°C was established as the optimum temperature for the production of bio-oil. A homogenous bio-oil was obtained from the pyrolysis of dry rice husk, and the physicochemical properties and chemical compositions were analysed. The second objective is the introduction of catalysts into the pyrolysis process which aims to improve the bio-oil quality, and maximise the desired liquid bio-oil properties. The incorporation of the catalysts was done via a fixed tube reactor into the pyrolysis system. Ceramic monoliths were used as the catalyst support, with montmorillonite clay as a binder to attach the catalysts onto the catalyst support. ZSM-5, Al-MCM-41, Al-MSU-F and Brunei rice husk ash (BRHA) together with its combination were adopted as catalysts. Proposed criterions dictated the selection of the best catalysts, subsequently leading to the optimisation process for bio-oil production. ZSM-5/Al-MCM-41 proved the most desirable catalyst, which increases the production of aromatics and phenols, decreased the organic acids and improved the physicochemical properties such as the pH, viscosity, density and H:C molar ratios. Variation in the ratio and positioning of both catalysts were the significant key factor for the catalyst optimisation study.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
Dwindling oil reserves and growing concerns over CO2 emissions and associated climate change are driving the utilisation of renewable feedstocks as alternative, sustainable fuel sources. While rising oil prices are improving the commercial feasibility of biodiesel production, many current processes still employ homogeneous acid and/or base catalysts to transform plant or algae oil into the fatty acid methyl ester (FAME) components of biodiesel. Fuel purification requires energy intensive aqueous quench and neutralization steps, thus the rational design of new high activity catalysts is required to deliver biodiesel as a major player in the 21st century sustainable energy portfolio. Advances in the development of heterogeneous catalysts for biodiesel synthesis require catalysts with pore architectures designed to improve the accessibility of bulky viscous reactants typical of plant oils. Here we discuss how improvements to active site accessibility and catalyst activity in transesterification or esterification reactions can be achieved either by designing hierarchical pore networks or by pore expansion and use of interconnected pore architectures.
Resumo:
The combination of dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change is driving the urgent development of routes to utilise renewable feedstocks as sustainable sources of fuel and chemicals. Catalysis has a rich history of facilitating energy-efficient selective molecular transformations and contributes to 90% of chemical manufacturing processes and to more than 20% of all industrial products. In a post-petroleum era, catalysis will be central to overcoming the engineering and scientific barriers to economically feasible routes to biofuels and chemicals. This chapter will highlight some of the recent developments in heterogeneous catalytic technology for the synthesis of fuels and chemicals from renewable resources, derived from plant and aquatic oil sources as well as lignocellulosic feedstocks. Particular attention will be paid to the challenges faced when developing new catalysts and importance of considering the design of pore architectures and effect of tuning surface polarity to improve catalyst compatibility with highly polar bio-based substrates.
Resumo:
This study presents a report on pyrolysis of Napier grass stem in a fixed bed reactor. The effects of nitrogen flow (20 to 60 mL/min), and reaction temperature (450 to 650 degrees C) were investigated. Increasing the nitrogen flow from 20 to 30 mL/min increased the bio-oil yield and decreased both bio-char and non-condensable gas. 30 mL/min nitrogen flow resulted in optimum bio-oil yield and was used in the subsequent experiments. Reaction temperatures between 450 and 600 degrees C increased the bio-oil yield, with maximum yield of 32.26 wt% at 600 degrees C and a decrease in the corresponding bio-char and non-condensable gas. At 650 degrees C, reductions in the bio-oil and bio-char yields were recorded while the non-condensable gas increased. Water content of the bio-oil decreased with increasing reaction temperature, while density and viscosity increased. The observed pH and higher heating values were between 2.43 to 2.97, and 25.25 to 28.88 MJ/kg, respectively. GC-MS analysis revealed that the oil was made up of highly oxygenated compounds and requires upgrading. The bio-char and non-condensable gas were characterized, and the effect of reaction temperature on the properties was evaluated. Napier grass represents a good source of renewable energy when all pyrolysis products are efficiently utilized.