28 resultados para Numerical Solution


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regions containing internal boundaries such as composite materials arise in many applications.We consider a situation of a layered domain in IR3 containing a nite number of bounded cavities. The model is stationary heat transfer given by the Laplace equation with piecewise constant conductivity. The heat ux (a Neumann condition) is imposed on the bottom of the layered region and various boundary conditions are imposed on the cavities. The usual transmission (interface) conditions are satised at the interface layer, that is continuity of the solution and its normal derivative. To eciently calculate the stationary temperature eld in the semi-innite region, we employ a Green's matrix technique and reduce the problem to boundary integral equations (weakly singular) over the bounded surfaces of the cavities. For the numerical solution of these integral equations, we use Wienert's approach [20]. Assuming that each cavity is homeomorphic with the unit sphere, a fully discrete projection method with super-algebraic convergence order is proposed. A proof of an error estimate for the approximation is given as well. Numerical examples are presented that further highlights the eciency and accuracy of the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a Cauchy problem for the heat equation, where the temperature field is to be reconstructed from the temperature and heat flux given on a part of the boundary of the solution domain. We employ a Landweber type method proposed in [2], where a sequence of mixed well-posed problems are solved at each iteration step to obtain a stable approximation to the original Cauchy problem. We develop an efficient boundary integral equation method for the numerical solution of these mixed problems, based on the method of Rothe. Numerical examples are presented both with exact and noisy data, showing the efficiency and stability of the proposed procedure and approximations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the breakup (splitting) of multisoliton solutions of the nonlinear Schrödinger equation (NLSE), occurring due to linear loss. Two different approaches are used for the study of the splitting process. The first one is based on the direct numerical solution of the linearly damped NLSE and the subsequent analysis of the eigenvalue drift for the associated Zakharov-Shabat spectral problem. The second one involves the multisoliton adiabatic perturbation theory applied for studying the evolution of the solution parameters, with the linear loss taken as a small perturbation. We demonstrate that in the case of strong nonadiabatic loss the evolution of the Zakharov-Shabat eigenvalues can be quite nontrivial. We also demonstrate that the multisoliton breakup can be correctly described within the framework of the adiabatic perturbation theory and can take place even due to small linear loss. Eventually we elucidate the occurrence of the splitting and its dependence on the phase mismatch between the solitons forming a two-soliton bound state. © 2007 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The theory and experimental applications of optical Airy beams are in active development recently. The Airy beams are characterised by very special properties: they are non-diffractive and propagate along parabolic trajectories. Among the striking applications of the optical Airy beams are optical micro-manipulation implemented as the transport of small particles along the parabolic trajectory, Airy-Bessel linear light bullets, electron acceleration by the Airy beams, plasmonic energy routing. The detailed analysis of the mathematical aspects as well as physical interpretation of the electromagnetic Airy beams was done by considering the wave as a function of spatial coordinates only, related by the parabolic dependence between the transverse and the longitudinal coordinates. Their time dependence is assumed to be harmonic. Only a few papers consider a more general temporal dependence where such a relationship exists between the temporal and the spatial variables. This relationship is derived mostly by applying the Fourier transform to the expressions obtained for the harmonic time dependence or by a Fourier synthesis using the specific modulated spectrum near some central frequency. Spatial-temporal Airy pulses in the form of contour integrals is analysed near the caustic and the numerical solution of the nonlinear paraxial equation in time domain shows soliton shedding from the Airy pulse in Kerr medium. In this paper the explicitly time dependent solutions of the electromagnetic problem in the form of time-spatial pulses are derived in paraxial approximation through the Green's function for the paraxial equation. It is shown that a Gaussian and an Airy pulse can be obtained by applying the Green's function to a proper source current. We emphasize that the processes in time domain are directional, which leads to unexpected conclusions especially for the paraxial approximation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinematic mapping of a rigid open-link manipulator is a homomorphism between Lie groups. The homomorphisrn has solution groups that act on an inverse kinematic solution element. A canonical representation of solution group operators that act on a solution element of three and seven degree-of-freedom (do!) dextrous manipulators is determined by geometric analysis. Seven canonical solution groups are determined for the seven do! Robotics Research K-1207 and Hollerbach arms. The solution element of a dextrous manipulator is a collection of trivial fibre bundles with solution fibres homotopic to the Torus. If fibre solutions are parameterised by a scalar, a direct inverse funct.ion that maps the scalar and Cartesian base space coordinates to solution element fibre coordinates may be defined. A direct inverse pararneterisation of a solution element may be approximated by a local linear map generated by an inverse augmented Jacobian correction of a linear interpolation. The action of canonical solution group operators on a local linear approximation of the solution element of inverse kinematics of dextrous manipulators generates cyclical solutions. The solution representation is proposed as a model of inverse kinematic transformations in primate nervous systems. Simultaneous calibration of a composition of stereo-camera and manipulator kinematic models is under-determined by equi-output parameter groups in the composition of stereo-camera and Denavit Hartenberg (DH) rnodels. An error measure for simultaneous calibration of a composition of models is derived and parameter subsets with no equi-output groups are determined by numerical experiments to simultaneously calibrate the composition of homogeneous or pan-tilt stereo-camera with DH models. For acceleration of exact Newton second-order re-calibration of DH parameters after a sequential calibration of stereo-camera and DH parameters, an optimal numerical evaluation of DH matrix first order and second order error derivatives with respect to a re-calibration error function is derived, implemented and tested. A distributed object environment for point and click image-based tele-command of manipulators and stereo-cameras is specified and implemented that supports rapid prototyping of numerical experiments in distributed system control. The environment is validated by a hierarchical k-fold cross validated calibration to Cartesian space of a radial basis function regression correction of an affine stereo model. Basic design and performance requirements are defined for scalable virtual micro-kernels that broker inter-Java-virtual-machine remote method invocations between components of secure manageable fault-tolerant open distributed agile Total Quality Managed ISO 9000+ conformant Just in Time manufacturing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical continuation method has been carried out seeking solutions for two distinct flow configurations, planar Couette flow (PCF) and laterally heated flow in a vertical slot (LHF). We found that the spanwise vortex solution in LHF identifies a new solution in PCF. The vortical structure of our new solution has the shape of a hairpin observed ubiquitously in high-Reynolds-number turbulent flow, and we believe this discovery may provide the paradigm for a hierarchical organization of coherent structures in turbulent shear layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study re-examines the one-dimensional equilibrium model of Gibilaro and Rowe (1974) for a segregating gas fluidized bed. The model was based on volumetric jetsam concentration and divided the bed contents into bulk and wake phases, taking account of bulk and wake flux, segregation, exchange between the bulk and wake phases, and axial mixing. Due to the complex nature of the model and its unstable solution, the lack of computing power at the time prevented the authors from doing little more than the analytical solutions to specific cases of this model. This paper provides a numerical total solution and allows the effect of the respective parameters to be compared for the first time. There is also a comparison with experimental results, which showed a reasonable agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a numerical study on the transport of ions and ionic solution in human corneas and the corresponding influences on corneal hydration. The transport equations for each ionic species and ionic solution within the corneal stroma are derived based on the transport processes developed for electrolytic solutions, whereas the transport across epithelial and endothelial membranes is modelled by using phenomenological equations derived from the thermodynamics of irreversible processes. Numerical examples are provided for both human and rabbit corneas, from which some important features are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a highly sensitive refractive index (RI) sensor in the aqueous solution, which is based on an 81°-tilted fiber grating structure inscribed into a thin cladding fiber with 40 μm cladding radius. The numerical analysis has indicated that the RI sensitivity of cladding resonance mode of the grating can be significantly enhanced with reducing cladding size. This has been proved by the experimental results as the RI sensitivities of TM and TE resonance peaks in the index region of 1.345 have been increased to 1180 nm/RIU and 1150 nm/RIU, respectively, from only 200 and 170 nm/RIU for the same grating structure inscribed in standard telecom fiber with 62.5-μm cladding radius. Although the temperature sensitivity has also increased, the change in temperature sensitivity is still insignificant in comparison with RI sensitivity enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett. 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.