40 resultados para Nucleic acid delivery
Resumo:
Saturation mutagenesis is a powerful tool in modern protein engineering. This can allow the analysis of potential new properties thus allowing key residues within a protein to be targeted and randomised. However, the creation of large libraries using conventional saturation mutagenesis with degenerate codons (NNN or NNK) has inherent redundancy and disparities in residue representation. In this we describe the combination of ProxiMAX randomisation and CIS display for the use of generating novel peptides. Unlike other methods ProxiMAX randomisation does not require any intricate chemistry but simply utilises synthetic DNA and molecular biology techniques. Designed ‘MAX’ oligonucleotides were ligated, amplified and digested in an iterative cycle. Results show that randomised ‘MAX’ codons can be added sequentially to the base sequence creating a series of randomised non-degenerate codons that can subsequently be inserted into a gene. CIS display (Isogencia, UK) is an in vitro DNA based screening method that creates a genotype to phenotype link between a peptide and the nucleic acid that encodes it. The use of straight forward in vitro transcription/translation and other molecular biology techniques permits ease of use along with flexibility making it a potent screening technique. Using ProxiMAX randomisation in combination with CIS display, the aim is to produce randomised anti-nerve growth factor (NGF) and calcitonin gene-related (CGRP) peptides to demonstrate the high-throughput nature of this combination.
Resumo:
This chapter describes the sites and mechanisms of action of the major groups of microbicides, relating their physical and chemical properties to interactions with microbial structures. It considers the physical, cellular and molecular methods for studying the mechanisms of action of chemical microbicides. These range from the uptake, binding and penetration of microbial cells, to the interaction with microbial structures, including the cell wall, membrane, nucleic acids, cytoplasm and enzymes. Key features of the mechanisms of action of the major groups of microbicides are described covering oxidizing agents, alkylating agents, metal ion-binding agents, nucleic acid-binding agents, protein denaturants and agents that interact with lipids. © 2013 Blackwell Publishing Ltd.
Resumo:
In this study, the amino acids arginine, aspartic acid, leucine, phenylalanine and threonine were investigated as 'dispersibility enhancers' in spray-dried powders for inhalation. Parameters such as spray-dried yield, tapped density, and Carr's Index were not predictive of aerosolisation performance. In addition, whilst the majority of amino acid-modified powders displayed suitable particle size distribution for pulmonary administration and potentially favourable low moisture content, in vitro particle deposition was only enhanced for the leucine-modified powder. In summary, leucine can be used to enhance the dispersibility and aerosolisation properties of spray-dried powders for pulmonary drug delivery. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Disulfiram (DS), an anti-alcoholism drug, shows very strong cytotoxicity in many cancer types. However its clinical application in cancer treatment is limited by the very short half-life in the bloodstream. In this study, we developed a poly lactic-co-glycolic acid (PLGA)-encapsulated DS protecting DS from the degradation in the bloodstream. The newly developed DS-PLGA was characterized. The DS-PLGA has very satisfactory encapsulation efficiency, drug-loading content and controlled release rate in vitro. PLGA encapsulation extended the half-life of DS from shorter than 2 minutes to 7 hours in serum. In combination with copper, DS-PLGA significantly inhibited the liver cancer stem cell population. CI-isobologram showed a remarkable synergistic cytotoxicity between DS-PLGA and 5-FU or Sorafenib. It also demonstrated very promising anticancer efficacy and antimetastatic effect in liver cancer mouse model. Both DS and PLGA are FDA approved products for clinical application. Our study may lead to repositioning of DS into liver cancer treatment.
Resumo:
A prodrug, temozolomide acid hexyl ester (TMZA-HE), was identified as a skin-deliverable congener for temozolomide (TMZ) to treat skin cancers. Poor solubility and instability of TMZA-HE rendered a serious challenge for formulation of a topical preparation. Microemulsions (ME) were chosen as a potential vehicle for TMZA-HE topical preparations. ME systems were constructed with either oleic acid (OA) or isopropyl myristate (IPM) as the oil phase and tocopheryl (vitamin E) polyethylene glycol 1000 succinate (VE-TPGS) as a surfactant. Topical formulations of OA and IPM ME systems demonstrated beneficial solubilising ability and provided a stable environment for the prodrug, TMZA-HE. Significant differences between the microstructures of OA and IPM ME systems were revealed by freeze fracture electron microscopy (FFEM) and different loading abilities and permeation potencies between the two systems were also identified. In permeation studies, IPM ME systems, with inclusion of isopropyl alcohol (IPA) as a co-surfactant, significantly increased TMZA-HE permeation through silicon membranes and rat skin resulting in less drug retention within the skin, while OA ME systems demonstrated higher solubilising ability and a higher concentration of TMZA-HE retained within the skin. Therefore IPM ME systems are promising for transdermal delivery of TMZA-HE and OA ME systems may be a suitable choice for a topical formulation of TMZA-HE. © 2007 The Authors.
Resumo:
Clinical trials have shown temozolomide to be an effective agent for treatment of malignant melanoma. In order to investigate its suitability for delivery via the skin, a series of temozolomide esters was synthesized as prodrugs. In vitro assays demonstrated temozolomide, temozolomide acid and the hexyl ester equi-effective against selected cancer cell lines. The susceptibility of the esters to enzyme hydrolysis and their effectiveness for application to the skin were investigated. The esters effectively diffuse through rat skin and the hexyl ester demonstrated profound potency for penetrating through skin. Topical application of 5% (w/v) hexyl ester in DMSO solution on a mouse model demonstrated a significant inhibition of tumor growth. These results suggest that temozolomide esters could be an effective alternative to temozolomide in the treatment of skin cancer. © 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.
Resumo:
Liposome systems are well reported for their activity as vaccine adjuvants; however novel lipid-based microbubbles have also been reported to enhance the targeting of antigens into dendritic cells (DCs) in cancer immunotherapy (Suzuki et al 2009). This research initially focused on the formulation of gas-filled lipid coated microbubbles and their potential activation of macrophages using in vitro models. Further studies in the thesis concentrated on aqueous-filled liposomes as vaccine delivery systems. Initial work involved formulating and characterising four different methods of producing lipid-coated microbubbles (sometimes referred to as gas-filled liposomes), by homogenisation, sonication, a gas-releasing chemical reaction and agitation/pressurisation in terms of stability and physico-chemical characteristics. Two of the preparations were tested as pressure probes in MRI studies. The first preparation composed of a standard phospholipid (DSPC) filled with air or nitrogen (N2), whilst in the second method the microbubbles were composed of a fluorinated phospholipid (F-GPC) filled with a fluorocarbon saturated gas. The studies showed that whilst maintaining high sensitivity, a novel contrast agent which allows stable MRI measurements of fluid pressure over time, could be produced using lipid-coated microbubbles. The F-GPC microbubbles were found to withstand pressures up to 2.6 bar with minimal damage as opposed to the DSPC microbubbles, which were damaged at above 1.3 bar. However, it was also found that DSPC-filled with N2 microbubbles were also extremely robust to pressure and their performance was similar to that of F-GPC based microbubbles. Following on from the MRI studies, the DSPC-air and N2 filled lipid-based microbubbles were assessed for their potential activation of macrophages using in vitro models and compared to equivalent aqueous-filled liposomes. The microbubble formulations did not stimulate macrophage uptake, so studies thereafter focused on aqueous-filled liposomes. Further studies concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyldioctadecylammonium (DDA) and immunomodulatory trehalose dibehenate (TDB) with the addition of polyethylene glycol (PEG). One of the proposed hypotheses for the mechanism behind the immunostimulatory effect obtained with DDA:TDB is the ‘depot effect’ in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. The depot effect has been suggested to be primarily due to their cationic nature. Results reported within this thesis demonstrate that higher levels of PEG i.e. 25 % were able to significantly inhibit the formation of a liposome depot at the injection site and also severely limit the retention of antigen at the site. This therefore resulted in a faster drainage of the liposomes from the site of injection. The versatility of cationic liposomes based on DDA:TDB in combination with different immunostimulatory ligands including, polyinosinic-polycytidylic acid (poly (I:C), TLR 3 ligand), and CpG (TLR 9 ligand) either entrapped within the vesicles or adsorbed onto the liposome surface was investigated for immunogenic capacity as vaccine adjuvants. Small unilamellar (SUV) DDA:TDB vesicles (20-100 nm native size) with protein antigen adsorbed to the vesicle surface were the most potent in inducing both T cell (7-fold increase) and antibody (up to 2 log increase) antigen specific responses. The addition of TLR agonists poly(I:C) and CpG to SUV liposomes had small or no effect on their adjuvanticity. Finally, threitol ceramide (ThrCer), a new mmunostimulatory agent, was incorporated into the bilayers of liposomes composed of DDA or DSPC to investigate the uptake of ThrCer, by dendritic cells (DCs), and presentation on CD1d molecules to invariant natural killer T cells. These systems were prepared both as multilamellar vesicles (MLV) and Small unilamellar (SUV). It was demonstrated that the IFN-g secretion was higher for DDA SUV liposome formulation (p<0.05), suggesting that ThrCer encapsulation in this liposome formulation resulted in a higher uptake by DCs.
Resumo:
Aim: Topical application of ophthalmic drugs is very inefficient; contact lenses used as drug delivery devices could minimize the drug loss and side effects. Styrene-maleic acid copolymers (PSMA) can form polymer-phospholipid complexes with dipalmitoyl phosphatidylcholine (DMPC) in the form of nanometric vesicles, which can easily solubilise hydrophobic drugs. They can be dispersed on very thin contact lens coatings to immobilize the drug on their surface. Methods: Two types of complexes stable at different pH values (5 and 7 respectively) where synthesized and loaded with drugs of different hydrophilicities during their formation process. The drug release was studied in vitro and compared to the free drug. Results: The mean sizes of the complexes obtained by light scattering were 50 nm and 450 nm respectively with low polydispersities. However, they were affected by the drugs load and release. An increase was observed in the duration of the release in the case of hydrophobic drugs, from days to weeks, avoiding initial “burst” and with a lesser amount of total drug released due to the interaction of the drug with the phospholipid core. The size and charge of the different drugs and the complexes nature also affected the release profile. Conclusions: Polymer-phospholipid complexes in the form of nanoparticles can be used to solubilise and release hydrophobic drugs in a controlled way. The drug load and release can be optimised to reach therapeutic values in the eye.
Resumo:
This thesis is primarily concerned with the synthesis and polymerization of 5-methyl-1;3, 2-dioxathiolan-4-one-2-oxide (lactic acid anhydrosulphite (LAAS)) using anionic initiators under various conditions. Poly(lactic acid) is a biodegradable polymer which finds many uses in biomedical applications such as drug-delivery and wound-support systems. For such applications it is desirable to produce polymers having predictable molecular weight distributions and crystallinity, The use of anionic initiators offers a potential route to the creation of living polymers. The synthesis of LAAS was achieved by means of an established route though the procedure was modified to some extent and a new method of purification of the monomer using copper oxides was introduced, Chromatographic purification methods were also examined but found to be ineffective. An unusual impurity was discovered in some syntheses and this was identified by means of 1H and 13C NMR, elemental analysis and GC-MS. Since poly-α-esters having hydroxyl-bearing substituents might be expected to have high equilibrium water contents and hence low surface tension characteristics which might aid bio-compatibility, synthesis of gluconic acid anhydrosulphite was also attempted and the product characterised by 1H and 13C NMR. The kinetics of the decomposition of lactic acid anhydrosulphite by lithium tert-butoxide in nitrobenzene has been examined by means of gas evolution measurements. The kinetics of the reaction with potassium tert-butoxide (and also sec-butyl lithium) in tetrahydrofuran has been studied using calorimetric techniques. LAAS was block co-polymerized with styrene and also with 1,3-butadiene in tetrahydrofuran (in the latter case a statistical co-polymer was also produced).
Resumo:
Polyanhydrides are useful biodegradable vehicles for controlled drug delivery. In aqueous media the breaking of the anhydride bonds resulting in gradually polymer fragments collapse and release drugs in a controlled manner. In this study, two new biodegradable polyanhydrides copolymers were synthesised using a melt-polycondensation method. The first is poly (bis (p-carboxyphenoxy)-2-butene-co-sebacic acid) (CP2B: SA), which has double bonds along the polymer backbone. The second is crosslinked poly (glutamic acid-sebacic acid-co-sebacic acid) (GluSA: SA), where the conjugated unit of glutamic acid with sebacic acid (glutamic acid-SA) acted as a crosslinking fragment in producing the crosslinking polymer. The two polymers were applied to preparation of microspheres with bovine serum albumin (BSA) as a model protein, using both double emulsion solvent evaporation and spray drying methods. The characterisation of the microspheres, morphology, particle size, and drug loading, was studied. The in vitro hydrolytic degradation of polymers and blank microspheres was monitored using IR, GPC, and DSC. In vitro drug release behaviour was also studied. Though the studies showed cleavages of anhydride bonds occurred rapidly (<5 days), bulks of the polymer microspheres could be observed after a few weeks to a month; and only around 10-35% of the protein was detectable in a four-week period in vitro. We found the pH of the medium exerts a large impact on the release of the protein from the microspheres. The higher the pH, the faster the release. Therefore the release of the protein from the polyanhydride microspheres was pH-sensitive due mainly to the dissolution of monomers from the microspheres.
Resumo:
This work describes the fabrication of nanospheres from a range of novel polyhydroxyalkanoates supplied by Monsanto, St Louis, Missouri, USA for the delivery of selected actives of both pharmaceutical and agricultural interest. Initial evaluation of established microsphere and nanosphere fabrication techniques resulted in the adoption and optimisation of a double sonication solvent evaporation method involving the synperonic surfactant F68. Nanospheres could be consistently generated with this method. Studies on the incorporation and release of the surrogate protein Bovine Serum Albumin V demonstrated that BSA could be loaded with between 10-40% w/w BSA without nanosphere destabilisation. BSA release from nanospheres into Hanks Balanced Salts Solution, pH 7.4, could be monitored for up to 28 days at 37°C. The incorporation and release of the Monsanto actives - the insecticide Admire® ({ 1-[(6-chloro-3-pyridinyl)methyIJ-N-nitro-2-imidazolidinimine}) and the plant growth hormone potassium salt Gibberellic acid (GA3K) from physico-chemically characterised polymer nanospheres was monitored for up to 37 days and 28 days respectively, at both 4°C and 23°C. Release data was subsequently fitted to established kinetic models to elaborate the possible mechanisms of release of actives from the nanospheres. The exposure of unloaded nanospheres to a range of physiological media and rural rainwater has been used to investigate the role polymer biodegradation by enzymatic and chemical means might play in the in vivo release of actives and agricultural applications. The potential environmental biodegradation of Monsanto polymers has been investigated using a composting study (International Standard ISO/FDIS 14855) in which the ultimate aerobic biodegradation of the polymers has been monitored by the analysis of evolved carbon dioxide. These studies demonstrated the potential of the polymers for use in the environment, for example as a pesticide delivery system.
Resumo:
This research focused on the formation of particulate delivery systems for the sub-unit fusion protein, Ag85B-ESAT-6, a promising tuberculosis (TB) vaccine candidate. Initial work concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyl dioctadecyl ammonium (DDA). These studies demonstrated that addition of the immunomodulatory trehalose dibehenate (TDB) enhanced the physical stability of the system whilst also adding further adjuvanticity. Indeed, this formulation was effective in stimulating both a cell mediated and humoural immune response. In order to investigate an alternative to the DDA-TDB system, microspheres based on poly(DL-lactide-co-glycolide) (PLGA) incorporating the adjuvants DDA and TDB, either alone or in combination, were first optimised in terms of physico-chemical characteristics, followed by immunological analysis. The formulation incorporating PLGA and DDA emerged as the lead candidate, with promising protection data against TB. Subsequent optimisation of the lead microsphere formulation investigated the effect of several variables involved in the formulation process on physico-chemical and immunological characteristics of the particles produced. Further, freeze-drying studies were carried out with both sugar-based and amino acid-based cryoprotectants, in order to formulate a stable freexe-dried product. Finally, environmental scanning electron microscopy (ESEM) was investigated as a potential alternative to conventional SEM for the morphological investigation of microsphere formulations. Results revealed that the DDA-TDB liposome system proved to be the most immunologically efficient delivery vehicle studied, with high levels of antibody and cytokine production, particularly gamma-interferon (IFN-ϒ), considered the key cytokine marker for anti-mycobacterial immunity. Of the microsphere systems investigated, PLGA in combination with DDA showed the most promise, with an ability to initiate a broad spectrum of cytokine production, as well as antigen specific spleen cell proliferation comparable to that of the DDA-TDB formulation.
Resumo:
It is advantageous to develop controlled release dosage forms utilising site-specific delivery or gastric retention for those drugs with frequent or high dosing regimes. Cimetidine is a potent and selective H2 -reception antagonist used in the treatment of various gastrointestinal disorders and localisation in the upper gastrointestinal tract could significantly improve the drug absorption. Three strategies were undertaken to prepare controlled release systems for the delivery of cimetidine to the GI tract. Firstly, increasing the contact time of the dosage form with the mucus layer which coats the gastrointestinal tract, may lead to increased gastric residence times. Mucoadhesive microspheres, by forming a gel-like structure in contact with the mucus, should prolong the contact between the delivery system and the mucus layer, and should have the potential for releasing the drug in sustained and controlled manner. Gelatin microspheres were prepared, optimised and characterised for their physicochemical properties. Crosslinking concentration, particle size and cimetidine loading influenced drug release profiles. Particle size was influenced by surfactant concentration and stirring speed. Mucoadheisve polymers such as alginates, chitosans, carbopols and polycarbophil were incorporated into the microspheres using different strategies. The mucoadhesion of the microspheres was determined using in vitro surface adsorption and ex vivo rat intestine models. The surface-modification strategy resulted in highest levels of microsphere adhesion, with chitosan, carbopols and polycarbophil as the most successful candidates for improvement of adhesion, with over 70% of the microspheres retained ex vivo. Specific targeting agent UEA I lectin was conjugated to the surface of gelatin microspheres, which enhanced the adhesion of the microspheres. Alginate raft systems containing antacids have been used extensively in the treatment of gastro-oesophageal disease and protection of the oesophageal mucosa from acid reflux by forming a viscous raft layer on the surface of the stomach content, and could be an effective delivery system for controlled release of cimetidine.
Resumo:
In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.