22 resultados para Nuclar physics
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We review the main physical and mathematical properties of dispersion-managed (DM) optical solitons. Theory of DM solitons can be presented at two levels of accuracy: first, simple, but nevertheless, quantitative models based on ordinary differential equations governing evolution of the soliton width and phase parameter (the so-called chirp); and second, a comprehensive path-average theory that is capable of describing in detail both the fine structure of DM soliton form and its evolution along the fiber line. An analogy between DM soliton and a macroscopic nonlinear quantum oscillator model is also discussed. © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
Resumo:
Advances in statistical physics relating to our understanding of large-scale complex systems have recently been successfully applied in the context of communication networks. Statistical mechanics methods can be used to decompose global system behavior into simple local interactions. Thus, large-scale problems can be solved or approximated in a distributed manner with iterative lightweight local messaging. This survey discusses how statistical physics methodology can provide efficient solutions to hard network problems that are intractable by classical methods. We highlight three typical examples in the realm of networking and communications. In each case we show how a fundamental idea of statistical physics helps solve the problem in an efficient manner. In particular, we discuss how to perform multicast scheduling with message passing methods, how to improve coding using the crystallization process, and how to compute optimal routing by representing routes as interacting polymers.
Resumo:
Motivation: Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function, and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Results: Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from “first passage probability distribution” to summarize statistics of ensemble averaged amino acid propensity values. In this paper, we introduce and elaborate this approach.
Resumo:
A comprehensive coverage is crucial for communication, supply, and transportation networks, yet it is limited by the requirement of extensive infrastructure and heavy energy consumption. Here, we draw an analogy between spins in antiferromagnet and outlets in supply networks, and apply techniques from the studies of disordered systems to elucidate the effects of balancing the coverage and supply costs on the network behavior. A readily applicable, coverage optimization algorithm is derived. Simulation results show that magnetized and antiferromagnetic domains emerge and coexist to balance the need for coverage and energy saving. The scaling of parameters with system size agrees with the continuum approximation in two dimensions and the tree approximation in random graphs. Due to frustration caused by the competition between coverage and supply cost, a transition between easy and hard computation regimes is observed. We further suggest a local expansion approach to greatly simplify the message updates which shed light on simplifications in other problems. © 2014 American Physical Society.
Resumo:
Many innovations are inspired by past ideas in a nontrivial way. Tracing these origins and identifying scientific branches is crucial for research inspirations. In this paper, we use citation relations to identify the descendant chart, i.e., the family tree of research papers. Unlike other spanning trees that focus on cost or distance minimization, we make use of the nature of citations and identify the most important parent for each publication, leading to a treelike backbone of the citation network. Measures are introduced to validate the backbone as the descendant chart. We show that citation backbones can well characterize the hierarchical and fractal structure of scientific development, and lead to an accurate classification of fields and subfields. © 2011 American Physical Society.