43 resultados para Nonlinear integral equations.
Resumo:
Mode-locked fiber lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes. The complex interplay among the effects of gain/loss, dispersion and nonlinearity in a fiber cavity can be used to shape the pulses and manipulate and control the light dynamics and, hence, lead to different mode-locking regimes. Major steps forward in pulse energy and peak power performance of passively mode-locked fiber lasers have been made with the recent discovery of new nonlinear regimes of pulse generation, namely, dissipative solitons in all-normal-dispersion cavities and parabolic self-similar pulses (similaritons) in passive and active fibers. Despite substantial research in this field, qualitatively new phenomena are still being discovered. In this talk, we review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fiber lasers. These include similariton mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fiber laser by inclusion of a spectral filter into the laser cavity.
Resumo:
We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schrödinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg–de-Vries and the nonlinear Schrödinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.
Resumo:
This thesis describes the design and implementation of a new dynamic simulator called DASP. It is a computer program package written in standard Fortran 77 for the dynamic analysis and simulation of chemical plants. Its main uses include the investigation of a plant's response to disturbances, the determination of the optimal ranges and sensitivities of controller settings and the simulation of the startup and shutdown of chemical plants. The design and structure of the program and a number of features incorporated into it combine to make DASP an effective tool for dynamic simulation. It is an equation-oriented dynamic simulator but the model equations describing the user's problem are generated from in-built model equation library. A combination of the structuring of the model subroutines, the concept of a unit module, and the use of the connection matrix of the problem given by the user have been exploited to achieve this objective. The Executive program has a structure similar to that of a CSSL-type simulator. DASP solves a system of differential equations coupled to nonlinear algebraic equations using an advanced mixed equation solver. The strategy used in formulating the model equations makes it possible to obtain the steady state solution of the problem using the same model equations. DASP can handle state and time events in an efficient way and this includes the modification of the flowsheet. DASP is highly portable and this has been demonstrated by running it on a number of computers with only trivial modifications. The program runs on a microcomputer with 640 kByte of memory. It is a semi-interactive program, with the bulk of all input data given in pre-prepared data files with communication with the user is via an interactive terminal. Using the features in-built in the package, the user can view or modify the values of any input data, variables and parameters in the model, and modify the structure of the flowsheet of the problem during a simulation session. The program has been demonstrated and verified using a number of example problems.
On the numerical solution of a Cauchy problem in an elastostatic half-plane with a bounded inclusion
Resumo:
We propose an iterative procedure for the inverse problem of determining the displacement vector on the boundary of a bounded planar inclusion given the displacement and stress fields on an infinite (planar) line-segment. At each iteration step mixed boundary value problems in an elastostatic half-plane containing the bounded inclusion are solved. For efficient numerical implementation of the procedure these mixed problems are reduced to integral equations over the bounded inclusion. Well-posedness and numerical solution of these boundary integral equations are presented, and a proof of convergence of the procedure for the inverse problem to the original solution is given. Numerical investigations are presented both for the direct and inverse problems, and these results show in particular that the displacement vector on the boundary of the inclusion can be found in an accurate and stable way with small computational cost.
Resumo:
We consider a Cauchy problem for the Laplace equation in a bounded region containing a cut, where the region is formed by removing a sufficiently smooth arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct the solution on the cut from the values of the solution and its normal derivative on the boundary of the domain D. We propose an alternating iterative method which involves solving direct mixed problems for the Laplace operator in the same region. These mixed problems have either a Dirichlet or a Neumann boundary condition imposed on the cut and are solved by a potential approach. Each of these mixed problems is reduced to a system of integral equations of the first kind with logarithmic and hypersingular kernels and at most a square root singularity in the densities at the endpoints of the cut. The full discretization of the direct problems is realized by a trigonometric quadrature method which has super-algebraic convergence. The numerical examples presented illustrate the feasibility of the proposed method.
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
Resumo:
An iterative method for the parabolic Cauchy problem in planar domains having a finite number of corners is implemented based on boundary integral equations. At each iteration, mixed well-posed problems are solved for the same parabolic operator. The presence of corner points renders singularities of the solutions to these mixed problems, and this is handled with the use of weight functions together with, in the numerical implementation, mesh grading near the corners. The mixed problems are reformulated in terms of boundary integrals obtained via discretization of the time-derivative to obtain an elliptic system of partial differential equations. To numerically solve these integral equations a Nyström method with super-algebraic convergence order is employed. Numerical results are presented showing the feasibility of the proposed approach. © 2014 IMACS.
Resumo:
In this paper, we investigate the impact of inter-modal four-wave mixing on mode- and wavelength-division-multiplexing systems. A set of coupled nonlinear Schrödinger equations, including linear mode coupling, is derived allowing to isolate the inter-modal four-wave mixing terms. The efficiency of inter-modal four-wave mixing between degenerate LP modes is found to be significantly higher than the intra-modal four-wave mixing efficiency. However, it is shown that the inter-modal four-wave mixing efficiency between degenerate modes is significantly reduced by the linear mode coupling.