20 resultados para Neighbourhood movement, political issue, frames, social networks
Resumo:
Human beings are political animals. They are also articulate mammals. How are these two aspects linked? This is a question that is only beginning to be explored. The present collection makes a contribution to the investigations into the use of language in those situations which, informally and intuitively, we call ‘political’. Such an approach is revealing not only for politics itself but also for the human language capacity. Each chapter outlines a particular method or analytic approach and illustrates its application to a contemporary political issue, institution or mode of political behaviour. As a whole, the collection aims to give a sample of current research in the field. It will interest those who are beginning to carry the research paradigm forward, as well as provide an introduction for newcomers, whether they come from neighbouring or remote disciplines or from none.
Resumo:
Sales leadership research has typically taken a leader-focused approach, investigating key questions from a top-down perspective. Yet considerable research outside sales has advocated a view of leadership that takes into account the fact that employees look beyond a single designated individual for leadership. In particular, the social networks of leaders have been a popular topic of investigation in the management literature, although coverage in the sales literature remains rare. The present paper conceptualizes the sales leadership role as one in which the leader must manage a network of simultaneous relationships; several types of sales manager relationships, such as the sales-manager-to-top-manager and the sales-manager-to-sales manager relationships, have received limited attention in the sales literature to date. Taking an approach based on social network theory, we develop a conceptualization of the sales manager as a "network engineer," who must manage multiple relationships, and the flows between them. Drawing from this model, we propose a detailed agenda for future sales research. © 2012 PSE National Educational Foundation. All rights reserved.
Resumo:
In this paper, we explore the idea of social role theory (SRT) and propose a novel regularized topic model which incorporates SRT into the generative process of social media content. We assume that a user can play multiple social roles, and each social role serves to fulfil different duties and is associated with a role-driven distribution over latent topics. In particular, we focus on social roles corresponding to the most common social activities on social networks. Our model is instantiated on microblogs, i.e., Twitter and community question-answering (cQA), i.e., Yahoo! Answers, where social roles on Twitter include "originators" and "propagators", and roles on cQA are "askers" and "answerers". Both explicit and implicit interactions between users are taken into account and modeled as regularization factors. To evaluate the performance of our proposed method, we have conducted extensive experiments on two Twitter datasets and two cQA datasets. Furthermore, we also consider multi-role modeling for scientific papers where an author's research expertise area is considered as a social role. A novel application of detecting users' research interests through topical keyword labeling based on the results of our multi-role model has been presented. The evaluation results have shown the feasibility and effectiveness of our model.
Resumo:
Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users' influence scores. They rarely consider a person's expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally 'Sina microblogging'). We found that there is a strong correlation between expertise levels and social media influence scores. In addition, different expertise levels showed influence variation patterns: high-expertise celebrities have stronger influence on the 'audience' in their expertise domains.
Resumo:
In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.