17 resultados para Near infrared luminescence


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inscription of Bragg gratings has been demonstrated in PMMA-based polymer optical fibre. The water affinity of PMMA can introduce significant wavelength change in a polymer optical fibre Bragg grating (POFBG). In polymer optical fibre losses are much higher than with silica fibre. Very strong absorption bands related to higher harmonics of vibrations of the C-H bond dominate throughout the visible and near infrared. Molecular vibration in substances generates heat, which is referred to as the thermal effect of molecular vibration. This means that a large part of the absorption of optical energy in those spectral bands will convert into thermal energy, which eventually drives water content out of the polymer fibre and reduces the wavelength of POFBG. In this work we have investigated the wavelength stability of POFBGs in different circumstances. The experiment has shown that the characteristic wavelength of a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fibre is established, depending on the initial water content inside the fibre, the surrounding humidity, the optical power applied, and the fibre size. Our investigation has shown that POFBGs operating at around 850 nm show much smaller wavelength reduction than those operating at around 1550 nm in the same fibre; POFBGs with different diameters show different changes; POFBGs powered by a low level light source, or operating in a very dry environment are least affected by this thermal effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs – an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal. The complexes are formed through Coulomb attractions between dye molecules with uncompensated charges and CNTs covered with an ionic surfactant in water. We demonstrate that the photoluminescent excitation of the dye can be transferred to the nanotubes, resulting in selective and strong amplification (up to a factor of 6) of the light emission from the excitonic levels of CNTs in the near-infrared spectral range, as experimentally observed via excitation-emission photoluminescence (PL) mapping. The chirality of the nanotubes and the type of ionic surfactant used to disperse the nanotubes both strongly affect the amplification; thus, the complexation provides sensing selectivity towards specific CNTs. Additionally, neither similar uncharged dyes nor CNTs covered with neutral surfactant form such complexes. As model organic molecules, we use a family of polymethine dyes with an easily tailorable molecular structure and, consequently, tunable absorbance and PL characteristics. This provides us with a versatile tool for the controllable photonic and electronic engineering of an efficient probe for CNT detection.