53 resultados para Natural language generation
Resumo:
Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.
Resumo:
This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.
Resumo:
Text classification is essential for narrowing down the number of documents relevant to a particular topic for further pursual, especially when searching through large biomedical databases. Protein-protein interactions are an example of such a topic with databases being devoted specifically to them. This paper proposed a semi-supervised learning algorithm via local learning with class priors (LL-CP) for biomedical text classification where unlabeled data points are classified in a vector space based on their proximity to labeled nodes. The algorithm has been evaluated on a corpus of biomedical documents to identify abstracts containing information about protein-protein interactions with promising results. Experimental results show that LL-CP outperforms the traditional semisupervised learning algorithms such as SVMand it also performs better than local learning without incorporating class priors.
Resumo:
This paper summarizes the scientific work presented at the 32nd European Conference on Information Retrieval. It demonstrates that information retrieval (IR) as a research area continues to thrive with progress being made in three complementary sub-fields, namely IR theory and formal methods together with indexing and query representation issues, furthermore Web IR as a primary application area and finally research into evaluation methods and metrics. It is the combination of these areas that gives IR its solid scientific foundations. The paper also illustrates that significant progress has been made in other areas of IR. The keynote speakers addressed three such subject fields, social search engines using personalization and recommendation technologies, the renewed interest in applying natural language processing to IR, and multimedia IR as another fast-growing area.
Resumo:
This paper presents a comparative study of three closely related Bayesian models for unsupervised document level sentiment classification, namely, the latent sentiment model (LSM), the joint sentiment-topic (JST) model, and the Reverse-JST model. Extensive experiments have been conducted on two corpora, the movie review dataset and the multi-domain sentiment dataset. It has been found that while all the three models achieve either better or comparable performance on these two corpora when compared to the existing unsupervised sentiment classification approaches, both JST and Reverse-JST are able to extract sentiment-oriented topics. In addition, Reverse-JST always performs worse than JST suggesting that the JST model is more appropriate for joint sentiment topic detection.
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
All aspects of the concept of collocation – the phenomenon whereby words naturally tend to occur in the company of a restricted set of other words – are covered in this book. It deals in detail with the history of the word collocation, the concepts associated with it and its use in a linguistic context. The authors show the practical means by which the collocational behaviour of words can be explored using illustrative computer programs and examine applications in teaching, lexicography and natural language processing that use collocation in formation. The book investigates the place that collocation occupies in theories of language and provides a thoroughly comprehensive and up-to-date survey of the current position of collocation in language studies and applied linguistics. This text presents a comprehensive description of collocation, covering both the theoretical and practical background and the implications and applications of the concept as language model and analytical tool. It provides a definitive survey of currently available techniques and a detailed description of their implementation.
Resumo:
In this demonstration, we will present a semantic environment called the K-Box. The K-Box supports the lightweight integration of knowledge tools, with a focus on semantic tools, but with the flexibility to integrate natural language and conventional tools. We discuss the implementation of the framework, and two existing applications, including details of a new application for developers of semantic workflows. The demonstration will be of interest to developers and researchers of ontology-based knowledge management systems, and semantic desktops, and to analysts working with cross-media information. © 2011 ACM.
Resumo:
Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.
Resumo:
PowerAqua is a Question Answering system, which takes as input a natural language query and is able to return answers drawn from relevant semantic resources found anywhere on the Semantic Web. In this paper we provide two novel contributions: First, we detail a new component of the system, the Triple Similarity Service, which is able to match queries effectively to triples found in different ontologies on the Semantic Web. Second, we provide a first evaluation of the system, which in addition to providing data about PowerAqua's competence, also gives us important insights into the issues related to using the Semantic Web as the target answer set in Question Answering. In particular, we show that, despite the problems related to the noisy and incomplete conceptualizations, which can be found on the Semantic Web, good results can already be obtained.
Resumo:
While semantic search technologies have been proven to work well in specific domains, they still have to confront two main challenges to scale up to the Web in its entirety. In this work we address this issue with a novel semantic search system that a) provides the user with the capability to query Semantic Web information using natural language, by means of an ontology-based Question Answering (QA) system [14] and b) complements the specific answers retrieved during the QA process with a ranked list of documents from the Web [3]. Our results show that ontology-based semantic search capabilities can be used to complement and enhance keyword search technologies.
Resumo:
The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.
Resumo:
The goal of semantic search is to improve on traditional search methods by exploiting the semantic metadata. In this paper, we argue that supporting iterative and exploratory search modes is important to the usability of all search systems. We also identify the types of semantic queries the users need to make, the issues concerning the search environment and the problems that are intrinsic to semantic search in particular. We then review the four modes of user interaction in existing semantic search systems, namely keyword-based, form-based, view-based and natural language-based systems. Future development should focus on multimodal search systems, which exploit the advantages of more than one mode of interaction, and on developing the search systems that can search heterogeneous semantic metadata on the open semantic Web.
Resumo:
The Semantic Web (SW) offers an opportunity to develop novel, sophisticated forms of question answering (QA). Specifically, the availability of distributed semantic markup on a large scale opens the way to QA systems which can make use of such semantic information to provide precise, formally derived answers to questions. At the same time the distributed, heterogeneous, large-scale nature of the semantic information introduces significant challenges. In this paper we describe the design of a QA system, PowerAqua, designed to exploit semantic markup on the web to provide answers to questions posed in natural language. PowerAqua does not assume that the user has any prior information about the semantic resources. The system takes as input a natural language query, translates it into a set of logical queries, which are then answered by consulting and aggregating information derived from multiple heterogeneous semantic sources.